Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6674): 1031-1035, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033084

RESUMO

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

2.
Astron J ; 161(6)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505866

RESUMO

The comblike spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference for precise Doppler measurements. Understanding the stability of these devices across their broad (hundreds of nanometers) spectral bandwidths is essential to realizing their full potential as Doppler calibrators. However, published descriptions remain limited to small bandwidths or short time spans. We present an ~6 month broadband stability monitoring campaign of the Fabry-Pérot etalon system deployed with the near-infrared Habitable Zone Planet Finder (HPF) spectrograph. We monitor the wavelengths of each of ~3500 resonant modes measured in HPF spectra of this Fabry-Pérot etalon (free spectral range = 30 GHz, bandwidth = 820-1280 nm), leveraging the accuracy and precision of an electro-optic frequency comb reference. These results reveal chromatic structure in the Fabry-Pérot mode locations and their evolution with time. We measure an average drift on the order of 2 cm s-1 day-1, with local departures up to ±5 cm s-1 day-1. We discuss these behaviors in the context of the Fabry-Pérot etalon mirror dispersion and other optical properties of the system and the implications for the use of similar systems for precise Doppler measurements. Our results show that this system supports the wavelength calibration of HPF at the ≲10 cm s-1 level over a night and the ≲30 cm s-1 level over ~10 days. Our results also highlight the need for long-term and spectrally resolved study of similar systems that will be deployed to support Doppler measurement precision approaching ~10 cm s-1.

3.
Opt Express ; 20(6): 6631-43, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418547

RESUMO

We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.


Assuntos
Astronomia/instrumentação , Astronomia/normas , Lasers de Estado Sólido/normas , Análise Espectral/instrumentação , Análise Espectral/normas , Calibragem , Raios Infravermelhos , Internacionalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...