Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASAIO J ; 70(2): 107-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37831817

RESUMO

Effective treatment of heart failure with preserved ejection fraction (HFpEF) remains an unmet medical need. Although left atrial decompression using mechanical circulatory support devices was previously suggested, the heterogeneous HFpEF population and the lack of tailored devices have prevented the translation into clinical practice. This study aimed to evaluate the feasibility of left atrial decompression in HFpEF patients with a HeartMate 3 (HM3, Abbott Inc, Chicago, USA) in silico and in vitro . Anatomic compatibility of the HM3 pump was assessed by virtual device implantation into the left atrium through the left atrial appendage (LAA) and left atrial posterior wall (LAPW) of 10 HFpEF patients. Further, the efficacy of left atrial decompression was investigated experimentally in a hybrid mock loop, replicating the hemodynamics of an HFpEF phenotype at rest and exercise conditions. Virtual implantation without substantial intersection with surrounding tissues was accomplished through the LAA in 90% and 100% through the LAPW. Hemodynamic analysis in resting conditions demonstrated normalization of left atrial pressures without backflow at a pump speed of around 5400 rpm, whereas a range of 6400-7400 rpm was required during exercise. Therefore, left atrial decompression with the HM3 may be feasible in terms of anatomic compatibility and hemodynamic efficacy.


Assuntos
Apêndice Atrial , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/terapia , Volume Sistólico , Átrios do Coração/cirurgia , Hemodinâmica , Descompressão , Função Ventricular Esquerda
2.
IEEE Trans Biomed Eng ; 71(5): 1651-1662, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133971

RESUMO

OBJECTIVE: Conventional mock circulatory loops (MCLs) cannot replicate realistic hemodynamic conditions without inducing blood trauma. This constrains in-vitro hemocompatibility examinations of blood pumps to static test loops that do not mimic clinical scenarios. This study aimed at developing an atraumatic MCL based on a hardware-in-the-loop concept (H-MCL) for realistic hemocompatibility assessment. METHODS: The H-MCL was designed for 450 ± 50 ml of blood with the polycarbonate reservoirs, the silicone/polyvinyl-chloride tubing, and the blood pump under investigation as the sole blood-contacting components. To account for inherent coupling effects a decoupling pressure control was derived by feedback linearization, whereas the level control was addressed by an optimization task to overcome periodic loss of controllability. The HeartMate 3 was showcased to evaluate the H-MCL's accuracy at typical hemodynamic conditions. To verify the atraumatic properties of the H-MCL, hemolysis (bovine blood, n = 6) was evaluated using the H-MCL in both inactive (static) and active (minor pulsatility) mode, and compared to results achieved in conventional loops. RESULTS: Typical hemodynamic scenarios were replicated with marginal coupling effects and root mean square error (RMSE) below 1.74 ± 1.37 mmHg while the fluid level remained within ±4% of its target value. The normalized indices of hemolysis (NIH) for the inactive H-MCL showed no significant differences to conventional loops ( ∆NIH = -1.6 mg/100 L). Further, no significant difference was evident between the active and inactive mode in the H-MCL ( ∆NIH = +0.3 mg/100 L). CONCLUSION AND SIGNIFICANCE: Collectively, these findings indicated the H-MCL's potential for in-vitro hemocompatibility assessment of blood pumps within realistic hemodynamic conditions, eliminating inherent setup-related risks for blood trauma.


Assuntos
Coração Auxiliar , Hemólise , Animais , Hemólise/fisiologia , Bovinos , Desenho de Equipamento , Hemodinâmica/fisiologia , Teste de Materiais/métodos , Modelos Cardiovasculares , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...