Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13165, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162916

RESUMO

Coral reefs, especially those located near-shore, are increasingly exposed to anthropogenic, eutrophic conditions that are often chronic. Yet, corals under unperturbed conditions may frequently receive natural and usually temporary nutrient supplementation through biological sources such as fishes. We compared physiological parameters indicative of long- and short-term coral health (day and night calcification, fragment surface area, productivity, energy reserves, and tissue stoichiometry) under continuous and temporary nutrient enrichment. The symbiotic coral Acropora intermedia was grown for 7 weeks under continuously elevated (press) levels of ammonium (14 µmol L-1) and phosphate (10 µmol L-1) as separate and combined treatments, to discern the individual and interactive nutrient effects. Another treatment exposed A. intermedia twice-daily to an ammonium and phosphate pulse of the same concentrations as the press treatments to simulate natural biotic supplementation. Press exposure to elevated ammonium or phosphate produced mixed effects on physiological responses, with little interaction between the nutrients in the combined treatment. Overall, corals under press exposure transitioned resources away from calcification. However, exposure to nutrient pulses often enhanced physiological responses. Our findings indicate that while continuous nutrient enrichment may pose a threat to coral health, episodic nutrient pulses that resemble natural nutrient supplementation may significantly benefit coral health and physiology.


Assuntos
Compostos de Amônio/farmacologia , Antozoários/efeitos dos fármacos , Fosfatos/farmacologia , Compostos de Amônio/administração & dosagem , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Ritmo Circadiano , Fosfatos/administração & dosagem , Fotossíntese , Distribuição Aleatória , Água do Mar
2.
Glob Chang Biol ; 26(4): 2203-2219, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955493

RESUMO

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business-as-usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present-day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

3.
R Soc Open Sci ; 7(12): 201797, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489294

RESUMO

Understanding the effects of natural processes on coral-algal competition is an important step in identifying the role of macroalgae in perturbed coral reef ecosystems. However, studies investigating coral-algal interactions are often conducted in response to a disturbance, and rarely incorporate seasonal variability. Here, naturally occurring coral-algal interactions were assessed in situ four times a year over 2 years across eight sites spanning diverse benthic communities. In over 6500 recorded coral-algal interactions, cyanobacteria and turf algae were found to be the most damaging regardless of season, resulting in visible damage to coral in greater than 95% of interactions. Macroalgae that primarily compete using chemical mechanisms were found to be more damaging than those that compete using physical mechanisms (e.g. abrasion), with both groups demonstrating decreased competitive ability in summer. While crustose coralline algae were the least damaging to competing coral, during summer, it became three times more competitive. Our results demonstrate that the competitive ability of macroalgae and the outcomes of coral-algal competition can fluctuate in seasonal cycles that may be related to biomass, production of chemical defences and/or physical toughness. The results of this study have important implications for understanding the trajectory and resilience of coral reef ecosystems into the future.

4.
Harmful Algae ; 65: 40-51, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28526118

RESUMO

Coral reef macroalgae are expected to thrive in the future under conditions that are deleterious to the health of reef-building corals. Here we examined how macroalgae would be affected by exposure to future CO2 emission scenarios (pCO2 and temperature), enriched nutrients and combinations of both. The species tested, Laurencia intricata (Rhodophyta), Turbinaria ornata and Chnoospora implexa (both Phaeophyceae), have active carbon-concentrating mechanisms but responded differently to the treatments. L. intricata showed high mortality under nutrient enriched RCP4.5 ("reduced" CO2 emission) and RCP8.5 ("business-as-usual" CO2 emission) and grew best under pre-industrial (PI) conditions, where it could take up carbon using external carbonic anhydrase combined, potentially, with proton extrusion. T. ornata's growth rate showed a trend for reduction under RCP8.5 but was unaffected by nutrient enrichment. In C. implexa, highest growth was observed under PI conditions, but highest net photosynthesis occurred under RCP8.5, suggesting that under RCP8.5, carbon is stored and respired at greater rates while it is directed to growth under PI conditions. None of the species showed growth enhancement under future scenarios, nutrient enrichment or combinations of both. This leads to the conclusion that under such conditions these species are unlikely to pose an increasing threat to coral reefs.


Assuntos
Dióxido de Carbono/farmacologia , Laurencia/efeitos dos fármacos , Nutrientes/farmacologia , Phaeophyceae/efeitos dos fármacos , Alga Marinha/efeitos dos fármacos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila A/metabolismo , Mudança Climática , Recifes de Corais , Laurencia/crescimento & desenvolvimento , Laurencia/fisiologia , Phaeophyceae/crescimento & desenvolvimento , Phaeophyceae/fisiologia , Fotossíntese/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...