Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Schizophr Res ; 90(1-3): 41-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17156977

RESUMO

Clinical trials demonstrated that D-serine administration improves schizophrenia symptoms, raising the possibility that altered levels of endogenous D-serine may contribute to the N-methyl D-aspartate receptor hypofunction thought to play a role in the disease. We hypothesized that cerebro-spinal fluid (CSF) D-serine levels are decreased in the patients due to reduced synthesis and/or increased degradation in brain. We now monitored amino acid levels in CSF from 12 schizophrenia patients vs. 12 controls and in postmortem parietal-cortex from 15 control subjects and 15 each of schizophrenia, major-depression and bipolar patients. In addition, we monitored postmortem brain serine racemase and D-amino acid oxidase protein levels by Western-blot analysis. We found a 25% decrease in D-serine levels and D/L-serine ratio in CSF of schizophrenia patients, while parietal-cortex D-serine was unaltered. Levels of L-serine, L-glutamine and L-glutamate were unaffected. Frontal-cortex (39%) and hippocampal (21%) serine racemase protein levels and hippocampal serine racemase/D-amino acid oxidase ratio (34%) were reduced. Hippocampal D-amino-acid-oxidase protein levels significantly correlated with duration of illness (r=0.6, p=0.019) but not age. D-amino acid oxidase levels in patients with DOI>20 years were 77% significantly higher than in the other patients and controls. Our results suggest that reduced brain serine racemase and elevated D-amino acid oxidase protein levels may contribute to the lower CSF D-serine levels in schizophrenia.


Assuntos
Encéfalo/fisiopatologia , Esquizofrenia/líquido cefalorraquidiano , Serina/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Encéfalo/patologia , D-Aminoácido Oxidase/líquido cefalorraquidiano , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Ácido Glutâmico/líquido cefalorraquidiano , Glutamina/líquido cefalorraquidiano , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Racemases e Epimerases/líquido cefalorraquidiano , Valores de Referência , Esquizofrenia/patologia
2.
J Biol Chem ; 281(29): 20291-302, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16714286

RESUMO

Mammalian serine racemase is a brain-enriched enzyme that converts L- into D-serine in the nervous system. D-Serine is an endogenous co-agonist at the "glycine site" of N-methyl D-aspartate (NMDA) receptors that is required for the receptor/channel opening. Factors regulating the synthesis of D-serine have implications for the NMDA receptor transmission, but little is known on the signals and events affecting serine racemase levels. We found that serine racemase interacts with the Golgin subfamily A member 3 (Golga3) protein in yeast two-hybrid screening. The interaction was confirmed in vitro with the recombinant proteins in co-transfected HEK293 cells and in vivo by co-immunoprecipitation studies from brain homogenates. Golga3 and serine racemase co-localized at the cytosol, perinuclear Golgi region, and neuronal and glial cell processes in primary cultures. Golga3 significantly increased serine racemase steady-state levels in co-transfected HEK293 cells and primary astrocyte cultures. This observation led us to investigate mechanisms regulating serine racemase levels. We found that serine racemase is degraded through the ubiquitin-proteasomal system in a Golga3-modulated manner. Golga3 decreased the ubiquitylation of serine racemase both in vitro and in vivo and significantly increased the protein half-life in pulse-chase experiments. Our results suggest that the ubiquitin system is a main regulator of serine racemase and D-serine levels. Modulation of serine racemase degradation, such as that promoted by Golga3, provides a new mechanism for regulating brain d-serine levels and NMDA receptor activity.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Racemases e Epimerases/metabolismo , Serina/metabolismo , Ubiquitina/metabolismo , Animais , Autoantígenos , Fracionamento Celular , Linhagem Celular , Células Cultivadas , Glicina/metabolismo , Humanos , Isomerismo , Rim , L-Lactato Desidrogenase/análise , Proteínas de Membrana , Camundongos , Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/metabolismo , Frações Subcelulares/enzimologia , Transfecção
3.
J Biol Chem ; 280(3): 1754-63, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15536068

RESUMO

Mammalian brain contains high levels of d-serine, an endogenous co-agonist of N-methyl D-aspartate type of glutamate receptors. D-Serine is synthesized by serine racemase, a brain enriched enzyme converting L- to D-serine. Degradation of D-serine is achieved by D-amino acid oxidase, but this enzyme is not present in forebrain areas that are highly enriched in D-serine. We now report that serine racemase catalyzes the degradation of cellular D-serine itself, through the alpha,beta-elimination of water. The enzyme also catalyzes water alpha,beta-elimination with L-serine and L-threonine. alpha,beta-Elimination with these substrates is observed both in vitro and in vivo. To investigate further the role of alpha,beta-elimination in regulating cellular D-serine, we generated a serine racemase mutant displaying selective impairment of alpha,beta-elimination activity (Q155D). Levels of D-serine synthesized by the Q155D mutant are several-fold higher than the wild-type both in vitro and in vivo. This suggests that the alpha,beta-elimination reaction limits the achievable D-serine concentration in vivo. Additional mutants in vicinal residues (H152S, P153S, and N154F) similarly altered the partition between the alpha,beta-elimination and racemization reactions. alpha,beta-Elimination also competes with the reverse serine racemase reaction in vivo. Although the formation of L- from D-serine is readily detected in Q155D mutant-expressing cells incubated with physiological D-serine concentrations, reversal with wild-type serine racemase-expressing cells required much higher D-serine concentration. We propose that alpha,beta-elimination provides a novel mechanism for regulating intracellular D-serine levels, especially in brain areas that do not possess D-amino acid oxidase activity. Extracellular D-serine is more stable toward alpha,beta-elimination, likely due to physical separation from serine racemase and its elimination activity.


Assuntos
Racemases e Epimerases/metabolismo , Serina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Catálise , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Racemases e Epimerases/química , Racemases e Epimerases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA