Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114375, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897553

RESUMO

An inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.7 were determined for all species and for multispecies allometric scaling AFE was 1.9. A slightly larger prediction error for human half-life was determined from in vitro human insulin receptor affinity data (AFE on 2.3-2.6). The requirements for the inter-drug approach were shown to be a span of at least 2 orders of magnitude in half-life for the included drugs and a shared clearance mechanism. The insulin analogs in this study were the five fatty acid protracted analogs: Insulin degludec, insulin icodec, insulin 320, insulin 338 and insulin 362, as well as the non-acylated analog insulin aspart.

2.
ACS Omega ; 8(26): 23566-23578, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426277

RESUMO

Therapeutic peptides and proteins derived from either endogenous hormones, such as insulin, or de novo design via display technologies occupy a distinct pharmaceutical space in between small molecules and large proteins such as antibodies. Optimizing the pharmacokinetic (PK) profile of drug candidates is of high importance when it comes to prioritizing lead candidates, and machine-learning models can provide a relevant tool to accelerate the drug design process. Predicting PK parameters of proteins remains difficult due to the complex factors that influence PK properties; furthermore, the data sets are small compared to the variety of compounds in the protein space. This study describes a novel combination of molecular descriptors for proteins such as insulin analogs, where many contained chemical modifications, e.g., attached small molecules for protraction of the half-life. The underlying data set consisted of 640 structural diverse insulin analogs, of which around half had attached small molecules. Other analogs were conjugated to peptides, amino acid extensions, or fragment crystallizable regions. The PK parameters clearance (CL), half-life (T1/2), and mean residence time (MRT) could be predicted by using classical machine-learning models such as Random Forest (RF) and Artificial Neural Networks (ANN) with root-mean-square errors of CL of 0.60 and 0.68 (log units) and average fold errors of 2.5 and 2.9 for RF and ANN, respectively. Both random and temporal data splittings were employed to evaluate ideal and prospective model performance with the best models, regardless of data splitting, achieving a minimum of 70% of predictions within a twofold error. The tested molecular representations include (1) global physiochemical descriptors combined with descriptors encoding the amino acid composition of the insulin analogs, (2) physiochemical descriptors of the attached small molecule, (3) protein language model (evolutionary scale modeling) embedding of the amino acid sequence of the molecules, and (4) a natural language processing inspired embedding (mol2vec) of the attached small molecule. Encoding the attached small molecule via (2) or (4) significantly improved the predictions, while the benefit of using the protein language model-based encoding (3) depended on the used machine-learning model. The most important molecular descriptors were identified as descriptors related to the molecular size of both the protein and protraction part using Shapley additive explanations values. Overall, the results show that combining representations of proteins and small molecules was key for PK predictions of insulin analogs.

3.
Pharm Res ; 36(3): 49, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746556

RESUMO

PURPOSE: Fast-acting insulin aspart (faster aspart) is a novel formulation of insulin aspart containing two additional excipients: niacinamide, to increase early absorption, and L-arginine, to optimize stability. The aim of this study was to evaluate the impact of niacinamide on insulin aspart absorption and to investigate the mechanism of action underlying the accelerated absorption. METHODS: The impact of niacinamide was assessed in pharmacokinetic analyses in pigs and humans, small angle X-ray scattering experiments, trans-endothelial transport assays, vascular tension measurements, and subcutaneous blood flow imaging. RESULTS: Niacinamide increased the rate of early insulin aspart absorption in pigs, and pharmacokinetic modelling revealed this effect to be most pronounced up to ~30-40 min after injection in humans. Niacinamide increased the relative monomer fraction of insulin aspart by ~35%, and the apparent permeability of insulin aspart across an endothelial cell barrier by ~27%. Niacinamide also induced a concentration-dependent vasorelaxation of porcine arteries, and increased skin perfusion in pigs. CONCLUSION: Niacinamide mediates the acceleration of initial insulin aspart absorption, and the mechanism of action appears to be multifaceted. Niacinamide increases the initial abundance of insulin aspart monomers and transport of insulin aspart after subcutaneous administration, and also mediates a transient, local vasodilatory effect.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Insulina Aspart/farmacocinética , Niacinamida/farmacologia , Absorção Subcutânea/efeitos dos fármacos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/sangue , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Injeções Subcutâneas , Insulina Aspart/administração & dosagem , Modelos Biológicos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Tela Subcutânea/irrigação sanguínea , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Sus scrofa , Vasodilatação/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...