Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(8): 2454-2468, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106531

RESUMO

Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination. Changes in this limit were positively related to soil temperature during dormancy release and induction, and could be predicted using thermal time. From this, we developed a temperature-driven simulation to predict the fraction of the seed bank able to germinate in a realistic global warming scenario that approximated seedling emergence timing. Simulations predicted, in accordance with seedling emergence observed in the field, an increase in the fraction of the seed bank able to emerge as a result of global warming. In addition, our results suggest that buried seeds perceive changes in the variability of the mean daily soil temperature as the signal to change between dormancy release and induction according to the seasons.


Assuntos
Arabidopsis , Arabidopsis/fisiologia , Germinação/fisiologia , Aquecimento Global , Dormência de Plantas/fisiologia , Estações do Ano , Plântula/fisiologia , Sementes/fisiologia , Solo , Temperatura
2.
J Exp Bot ; 72(12): 4283-4297, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33822944

RESUMO

The timing of emergence of weed species has critical ecological and agronomical implications. In several species, emergence patterns largely depend on the level of dormancy of the seedbank, which is modulated by specific environmental factors. In addition, environmental conditions during seed maturation on the mother plant can have marked effects on the dormancy level at the time of seed dispersal. Hence, the maternal environment has been suggested to affect seedbank dormancy dynamics and subsequent emergence; however, this modulation has not been adequately examined under field conditions, and the mechanisms involved are only partly understood. Combining laboratory and field experiments with population-based models, we investigated how dormancy level and emergence in the field are affected by the sowing date and photoperiod experienced by the mother plant in Amaranthus hybridus, a troublesome weed worldwide. The results showed that an earlier sowing date and a longer photoperiod enhanced the level of dormancy by increasing the dormancy imposed by both the embryo and the seed coat. However, this did not affect the timing and extent of emergence in the field; on the contrary, the variations in dormancy level contributed to synchronizing the emergence of the next generation of plants with the time period that maximized population fitness. Our results largely correspond with effects previously observed in other species such as Polygonum aviculare and Arabidopsis, suggesting a common effect exists within different species.


Assuntos
Amaranthus , Arabidopsis , Germinação , Dormência de Plantas , Sementes
3.
J Exp Bot ; 71(19): 5924-5934, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706878

RESUMO

Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms. Quantification of endogenous ABA both prior to and during incubation, and sensitivity to ABA and GAs, were assessed in seeds with contrasting dormancy. Expression analysis was performed for candidate genes involved in hormone metabolism and signaling. It was found that endogenous ABA content does not explain either dormancy release or dormancy induction; moreover, it does not seem to play a role in dormancy maintenance. However, dormancy modifications were commonly accompanied by changes in ABA sensitivity. Concomitantly, induction into SD, but not PD, was characterized by a increased PaABI-5 and PaPYL transcription, and a rise in GA sensitivity as a possible counterbalance effect. These results suggest that dormancy cycling in this species is related to changes in embryo sensitivity to ABA; however, this sensitivity appears to be controlled by different molecular mechanisms in primary and secondary dormant seeds.


Assuntos
Ácido Abscísico , Polygonum , Germinação , Giberelinas , Dormência de Plantas , Sementes
4.
J Exp Bot ; 64(18): 5721-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24151305

RESUMO

The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.


Assuntos
Dormência de Plantas , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sorghum/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Simulação por Computador , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Sorghum/metabolismo , Fatores de Transcrição/genética
5.
Plant Cell Physiol ; 53(1): 64-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22076590

RESUMO

Grain sorghum [Sorghum bicolor (L) moench] exhibits intraspecific variability for the rate of dormancy release and pre-harvest sprouting behavior. Two inbred lines with contrasting sprouting response were compared: IS9530 (resistant) and RedlandB2 (susceptible). Precocious dormancy release in RedlandB2 is related to an early loss of embryo sensitivity to ABA and higher levels of gibberellins in imbibed grains as compared with IS9530. With the aim of identifying potential regulatory sites for gibberellin metabolism involved in the expression of dormancy in immature grains of both lines, we carried out a time course analysis of transcript levels of putative gibberellin metabolism genes and hormone content (GA(1), GA(4), GA(8) and GA(34)). A lower embryonic GA(4) level in dormant IS9530 was related to a sharp and transient induction of two SbGA2-oxidase (inactivation) genes. In contrast, these genes were not induced in less dormant RedlandB2, while expression of two SbGA20-oxidase (synthesis) genes increased together with active GA(4) levels before radicle protrusion. Embryonic levels of GA(4) and its catabolite GA(34) correlated negatively. Thus, in addition to the process of gibberellin synthesis, inactivation is also important in regulating GA(4) levels in immature grains. A negative regulation by gibberellins was observed for SbGA20ox2, SbGA2ox1 and SbGA2ox3 and also for SbGID1 encoding a gibberellin receptor. We propose that the coordinated regulation at the transcriptional level of several gibberellin metabolism genes identified in this work affects the balance between gibberellin synthesis and inactivation processes, controlling active GA(4) levels during the expression of dormancy in maturing sorghum grains.


Assuntos
Agricultura , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Giberelinas/metabolismo , Dormência de Plantas/genética , Sorghum/crescimento & desenvolvimento , Sorghum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/enzimologia
6.
Plant Mol Biol ; 73(1-2): 3-13, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20091421

RESUMO

The possibility of accurately predicting timing and extent of seedling emergence from natural seed soil banks has long been an objective of both ecologist and agriculturalist. However, as dormancy is a common attribute of many wild seed populations, we should first be able to predict dormancy changes if we intend to predict seedling emergence in the field. In this paper, we discuss the most relevant environmental factors affecting seed dormancy of natural seed soil banks, and present a conceptual framework as an attempt to understand how these factors affect seed-bank dormancy level. Based on this conceptual framework we show approaches that can be used to establish quantitative functional relationship between environmental factors regulating dormancy and changes in the seed-bank dormancy status. Finally, we briefly explain how we can utilize population-based threshold models as a framework to characterize and quantify changes in seed sensitivity to environmental factors as a consequence of dormancy loss and/or induction.


Assuntos
Modelos Biológicos , Sementes/fisiologia , Solo , Meio Ambiente , Germinação , Luz , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Temperatura , Água/fisiologia
7.
Ann Bot ; 104(5): 975-85, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19638448

RESUMO

BACKGROUND AND AIMS: Pre-harvest sprouting susceptibility in grain sorghum (Sorghum bicolor) is related to low seed dormancy and reduced embryo sensitivity to inhibition of germination by abscisic acid (ABA). Intra-specific variability for pre-harvest sprouting might involve differential regulation of ABA signalling genes. METHODS: Sorghum genes encoding homologues for ABA signalling components from other species (ABI5, ABI4, VP1, ABI1 and PKABA1) were studied at the transcriptional and protein level (ABI5) during grain imbibition for two sorghum lines with contrasting sprouting phenotypes and in response to hormones. KEY RESULTS: Transcript levels of these genes and protein levels of ABI5 were higher in imbibed immature caryopses of the more dormant line. Dormancy loss was related to lower transcript levels of these genes and lower ABI5 protein levels in both genotypes. Exogenous ABA inhibited germination of isolated embryos but failed to prevent ABI5 rapid decrease supporting a role for the seed coat in regulating ABI5 levels. CONCLUSIONS: Several genes involved in ABA signalling are regulated differently in imbibed caryopses from two sorghum lines with contrasting pre-harvest sprouting response before - but not after - physiological maturity. A role for ABI5 in the expression of dormancy during grain development is discussed.


Assuntos
Ácido Abscísico/genética , Germinação/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/fisiologia , Sementes/genética , Sorghum/genética , Ácido Abscísico/análise , Ácido Abscísico/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Western Blotting , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Germinação/fisiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/fisiologia , Reação em Cadeia da Polimerase , Sementes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
8.
New Phytol ; 165(2): 445-52, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15720655

RESUMO

The effect of cold (stratification) temperature on changes in the sensitivity of Polygonum aviculare seeds to light was investigated. Seeds buried in pots were stored under stratification temperatures (1.6, 7 and 12 degrees C) for 137 d. Seeds exhumed at regular intervals during storage were exposed to different light treatments. Germination responses obtained for seeds exposed to different light treatments and stratification temperatures were used to develop a model to predict the sensitivity of buried seeds to light. Seed sensitivity to light increased as dormancy loss progressed, showing the successive acquisition of low-fluence responses (LFR), very low-fluence responses (VLFR), and the loss of the light requirement for germination for a fraction of the seed population. These changes were inversely correlated to stratification temperature, allowing the use of a thermal time index to relate observed changes in seed light sensitivity to stratification temperature. The rate of increase in sensitivity of P. aviculare seeds to light during stratification is inversely correlated to soil temperature, and these changes in light sensitivity could be predicted in relation to temperature using thermal-time models.


Assuntos
Temperatura Baixa , Germinação/fisiologia , Luz , Polygonum/fisiologia , Sementes/fisiologia , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...