Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474113

RESUMO

The recent emergence of the SARS-CoV-2 variant Omicron has caused considerable concern due to reduced vaccine efficacy and escape from neutralizing antibody therapeutics. Omicron is spreading rapidly around the globe and is suspected to account for most new COVID-19 cases in several countries, though the severity of Omicron-mediated disease is still under debate. It is therefore paramount to identify therapeutic strategies that inhibit the Omicron SARS-CoV-2 variant. Here we report using 3D structural modelling that Spike of Omicron can still associate with human ACE2. Sera collected after the second mRNA-vaccination did not exhibit a protective effect against Omicron while strongly neutralizing infection of VeroE6 cells with the reference Wuhan strain, confirming recent data by other groups on limited vaccine and convalescent sera neutralization efficacy against Omicron. Importantly, clinical grade recombinant human soluble ACE2, a drug candidate currently in clinical development, potently neutralized Omicron infection of VeroE6 cells with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. These data show that SARS-CoV-2 variant Omicron can be readily inhibited by soluble ACE2, providing proof of principle of a viable and effective therapeutic approach against Omicron infections.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459744

RESUMO

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is therefore paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, and Delta, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by multiple VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...