Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 180, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632223

RESUMO

Neurodegenerative disorders are characterized by the progressive loss of structure and function of neurons, often including the death of the neuron. Previously, we reported that, by removing the cell death stimulus, dying/injured neurons could survive and recover from the process of regulated cell death, even if the cells already displayed various signs of cellular damage. Now we investigated the role of mitochondrial dynamics (fission/fusion, biogenesis, mitophagy) in both degeneration and in recovery of neuronal cells. In neuronal PC12 cells, exposure to ethanol (EtOH) induced massive neurite loss along with widespread mitochondrial fragmentation, mitochondrial membrane potential loss, reduced ATP production, and decreased total mitochondrial volume. By removing EtOH timely all these mitochondrial parameters recovered to normal levels. Meanwhile, cells regrew neurites and survived. Study of the mitochondrial dynamics showed that autophagy was activated only during the cellular degeneration phase (EtOH treatment) but not in the recovery phase (EtOH removed), and it was not dependent on the Parkin/PINK1 mediated mitophagy pathway. Protein expression of key regulators of mitochondrial fission, phospho-Drp1Ser616 and S-OPA1, increased during EtOH treatment and recovered to normal levels after removing EtOH. In addition, the critical role of PGC-1α mediated mitochondrial biogenesis in cellular recovery was revealed: inhibition of PGC-1α using SR-18292 after EtOH removal significantly impeded recovery of mitochondrial damage, regeneration of neurites, and cell survival in a concentration-dependent manner. Taken together, our study showed reversibility of mitochondrial morphological and functional damage in stressed neuronal cells and revealed that PGC-1α mediated mitochondrial biogenesis played a critical role in the cellular recovery. This molecular mechanism could be a target for neuroprotection and neurorescue in neurodegenerative diseases.

2.
Sci Rep ; 14(1): 4821, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413800

RESUMO

Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Renovação Mitocondrial , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Cell Commun Signal ; 22(1): 88, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297331

RESUMO

BACKGROUND: Retinal ganglion cell (RGC) degeneration and death cause vision loss in patients with glaucoma. Regulated cell death, once initiated, is generally considered to be an irreversible process. Recently, we showed that, by timely removing the cell death stimulus, stressed neuronal PC12 cells can recover from phosphatidylserine (PS) exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation, mitochondrial membrane potential loss, and retraction of neurites, all hallmarks of an activated cell death program. Whether the cell death process can be reversed in neurons of the central nervous system, like RGCs, is still unknown. Here, we studied reversibility of the activated cell death program in primary rat RGCs (prRGCs). METHODS: prRGCs were exposed to ethanol (5%, vol/vol) to induce cell death. At different stages of the cell death process, ethanol was removed by washing and injured prRGCs were further cultured in fresh medium to see whether they recovered. The dynamics of single cells were monitored by high-resolution live-cell spinning disk microscopy. PS exposure, mitochondrial structure, membrane potential, and intracellular Ca2+ were revealed by annexin A5-FITC, Mito-tracker, TMRM, and Fluo 8-AM staining, respectively. The distribution of cytochrome c was investigated by immunofluorescence. The ultrastructure of mitochondria was studied by electron microscopy. RESULTS: Analysis of temporal relationships between mitochondrial changes and PS exposure showed that fragmentation of the mitochondrial network and loss of mitochondrial membrane potential occurred before PS exposure. Mitochondrial changes proceeded caspase-independently, while PS exposure was caspase dependent. Interestingly, prRGCs recovered quickly from these mitochondrial changes but not from PS exposure at the plasma membrane. Correlative light and electron microscopy showed that stress-induced decrease in mitochondrial area, length and cristae number was reversible. Intracellular Ca2+ was elevated during this stage of reversible mitochondrial injury, but there was no sign of mitochondrial cytochrome c release. CONCLUSIONS: Our study demonstrates that RGCs with impaired mitochondrial structure and function can fully recover if there is no mitochondrial cytochrome c release yet, and no PS is exposed at the plasma membrane. This finding indicates that there is a time window for rescuing dying or injured RGCs, by simply removing the cell death stimulus. Video Abstract.


Assuntos
Apoptose , Células Ganglionares da Retina , Animais , Ratos , Caspases/metabolismo , Citocromos c/metabolismo , Etanol , Células Ganglionares da Retina/metabolismo
4.
Nat Commun ; 14(1): 5818, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783679

RESUMO

Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.


Assuntos
Infecções Bacterianas , Nicotinamida-Nucleotídeo Adenililtransferase , Infecções Respiratórias , Humanos , NAD/metabolismo , Proteômica , Citocinas/metabolismo , Linhagem Celular , Trifosfato de Adenosina , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
5.
Cell Commun Signal ; 21(1): 208, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592354

RESUMO

BACKGROUND: Lung infections caused by Streptococcus pneumonia are a global leading cause of death. The reactive oxygen species H2O2 is one of the virulence factors of Streptococcus pneumoniae. The Golgi apparatus is essential for the inflammatory response of a eukaryotic cell. Golgi fragmentation was previously shown to be induced by bacterial pathogens and in response to H2O2 treatment. This led us to investigate whether the Golgi apparatus is actively involved and targeted in host-pathogen interactions during pneumococcal infections. METHODS: Following in vitro infection of BEAS-2B bronchial epithelial cells with Streptococcus pneumoniae for 16 h, the structure of the Golgi apparatus was assessed by fluorescence staining of the Golgi-associated protein, Golgin-97. To investigate the effect of H2O2 production on Golgi structure, BEAS-2B cells were treated with H2O2 or the H2O2 degrading enzyme Catalase, prior to Golgi staining. Artificial disruption of the Golgi apparatus was induced by treatment of cells with the GBF1 inhibitor, Golgicide A. A proinflammatory cellular response was induced by treatment of cells with the bacterial cell wall component and TLR4 ligand lipoteichoic acid. RESULTS: In vitro infection of bronchial epithelial cells with wild type Streptococcus pneumoniae led to a disruption of normal Golgi structure. Golgi fragmentation was not observed after deletion of the pneumococcal H2O2-producing gene, spxB, or neutralization of H2O2 by catalase treatment, but could be induced by H2O2 treatment. Streptococcus pneumoniae infection significantly reduced host cell protein glycosylation and artificial disruption of Golgi structure significantly reduced bacterial adherence, but increased bacterial counts in the supernatant. To understand if this effect depended on cell-contact or soluble factors, pneumococci were treated with cell-supernatant of cells treated with Golgicide A and/or lipoteichoic acid. This approach revealed that lipoteichoic acid conditioned medium inhibits bacterial replication in presence of host cells. In contrast, artificial Golgi fragmentation by Golgicide A treatment prior to lipoteichoic acid treatment rescued bacterial replication. This effect was associated with an increase of IL-6 and IL-8 in the supernatant of lipoteichoic acid treated cells. The increased cytokine release was abolished if cells were treated with Golgicide A prior to lipoteichoic acid treatment. CONCLUSION: Streptococcus pneumoniae disrupts the Golgi apparatus in an H2O2-dependent manner, thereby inhibiting paracrine anti-infective mechanisms. Video Abstract.


Assuntos
Peróxido de Hidrogênio , Streptococcus pneumoniae , Catalase , Peróxido de Hidrogênio/farmacologia , Complexo de Golgi , Citocinas
6.
Exp Eye Res ; 232: 109500, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178956

RESUMO

Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Glaucoma de Baixa Tensão , Humanos , Glaucoma de Ângulo Aberto/diagnóstico , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Pressão Intraocular , Glaucoma de Baixa Tensão/genética , Mitocôndrias/genética
7.
Sci Rep ; 11(1): 10258, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986404

RESUMO

Chronic obstructive pulmonary disease (COPD) kills over three million people worldwide every year. Despite its high global impact, the knowledge about the underlying molecular mechanisms is still limited. In this study, we aimed to extend the available knowledge by identifying a small set of COPD-associated genes. We analysed different publicly available gene expression datasets containing whole lung tissue (WLT) and airway epithelium (AE) samples from over 400 human subjects for differentially expressed genes (DEGs). We reduced the resulting sets of 436 and 663 DEGs using a novel computational approach that utilises a random depth-first search to identify genes which improve the distinction between COPD patients and controls along the first principle component of the data. Our method identified small sets of 10 and 15 genes in the WLT and AE, respectively. These sets of genes significantly (p < 10-20) distinguish COPD patients from controls with high fidelity. The final sets revealed novel genes like cysteine rich protein 1 (CRIP1) or secretoglobin family 3A member 2 (SCGB3A2) that may underlie fundamental molecular mechanisms of COPD in these tissues.


Assuntos
Biologia Computacional/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Modelos Lineares , Pulmão/metabolismo , Pulmão/patologia , Análise de Componente Principal/métodos , Curva ROC , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transcriptoma/genética
8.
Adv Drug Deliv Rev ; 176: 113811, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022269

RESUMO

Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.


Assuntos
Vesículas Extracelulares/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Viral/microbiologia , Animais , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/terapia , Resistência Microbiana a Medicamentos , Pneumonia Associada a Assistência à Saúde/microbiologia , Pneumonia Associada a Assistência à Saúde/terapia , Interações entre Hospedeiro e Microrganismos , Humanos , Pneumonia Bacteriana/terapia , Pneumonia Viral/terapia
9.
FASEB J ; 34(12): 16432-16448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095949

RESUMO

Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.


Assuntos
Brônquios/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Influenza A/patogenicidade , Infecções Pneumocócicas/metabolismo , Pneumonia Pneumocócica/metabolismo , Brônquios/microbiologia , Brônquios/virologia , Linhagem Celular , Coinfecção/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/virologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/virologia , Streptococcus pneumoniae/patogenicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-32850498

RESUMO

Next-generation sequencing (NGS) has instigated the research on the role of the microbiome in health and disease. The compositional nature of such microbiome datasets makes it however challenging to identify those microbial taxa that are truly associated with an intervention or health outcome. Quantitative microbiome profiling overcomes the compositional structure of microbiome sequencing data by integrating absolute quantification of microbial abundances into the NGS data. Both cell-based methods (e.g., flow cytometry) and molecular methods (qPCR) have been used to determine the absolute microbial abundances, but to what extent different quantification methods generate similar quantitative microbiome profiles has so far not been explored. Here we compared relative microbiome profiling (without incorporation of microbial quantification) to three variations of quantitative microbiome profiling: (1) microbial cell counting using flow cytometry (QMP), (2) counting of microbial cells using flow cytometry combined with Propidium Monoazide pre-treatment of fecal samples before metagenomics DNA isolation in order to only profile the microbial composition of intact cells (QMP-PMA), and (3) molecular based quantification of the microbial load using qPCR targeting the 16S rRNA gene. Although qPCR and flow cytometry both resulted in accurate and strongly correlated results when quantifying the bacterial abundance of a mock community of bacterial cells, the two methods resulted in highly divergent quantitative microbial profiles when analyzing the microbial composition of fecal samples from 16 healthy volunteers. These differences could not be attributed to the presence of free extracellular prokaryotic DNA in the fecal samples as sample pre-treatment with Propidium Monoazide did not improve the concordance between qPCR-based and flow cytometry-based QMP. Also lack of precision of qPCR was ruled out as a major cause of the disconcordant findings, since quantification of the fecal microbial load by the highly sensitive digital droplet PCR correlated strongly with qPCR. In conclusion, quantitative microbiome profiling is an elegant approach to bypass the compositional nature of microbiome NGS data, however it is important to realize that technical sources of variability may introduce substantial additional bias depending on the quantification method being used.


Assuntos
Microbiota , Bactérias/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética
12.
Cell Signal ; 67: 109498, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837465

RESUMO

Lower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.g. in host cell proliferation and bacterial counteraction, and has been proposed as a biomarker in several acute and chronic inflammatory conditions. MicroRNAs (miR) have become important regulators of inflammation and infection and are considered therapeutic targets in recent years. However, it is not known whether microRNAs play a role in the regulation of CHI3L1 expression in TLR-mediated respiratory epithelial cell inflammation. In this study, we analysed the pre- and post-transcriptional regulation of CHI3L1 by TLRs in bronchial epithelial cells. Therefore, we stimulated BEAS-2B cells with the bacterial TLR2-ligand lipoteichoic acid or the viral dsRNA analogue poly(I:C). We observed an increase in the expression of CHI3L1, which was dependent on TNF-α-mediated NF-κB activation in TLR2- and TLR3-activated cells. Moreover, TLR2 and - 3 stimulation caused downregulation of the microRNA miR-149-5p, an effect that could be suppressed by inhibiting NF-κB translocation into the nucleus. Luciferase reporter assays identified a direct interaction of miR-149-5p with the CHI3L1 3´untranslated region. This interaction was confirmed by inhibition and overexpression of miR-149-5p in BEAS-2B cells, which altered the expression levels of CHI3L1 mRNA. In summary, miR-149-5p directly regulates CHI3L1 in context of TLR-mediated airway epithelial cell inflammation and may be a potential therapeutic target in inflammation and other diseases.


Assuntos
Proteína 1 Semelhante à Quitinase-3/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Pulmão/citologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular , Proteína 1 Semelhante à Quitinase-3/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
13.
Oxid Med Cell Longev ; 2019: 5204218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485294

RESUMO

Chronic exposure to respiratory stressors increases the risk for pulmonary and cardiovascular diseases. Previously, we have shown that cigarette smoke extract (CSE) triggers the release of CD63+CD81+ and tissue factor (TF)+ procoagulant extracellular vesicles (EVs) by bronchial epithelial cells via depletion of cell surface thiols. Here, we hypothesized that this represents a universal response for different pulmonary cell types and respiratory exposures. Using bead-based flow cytometry, we found that bronchial epithelial cells and pulmonary fibroblasts, but not pulmonary microvascular endothelial cells or macrophages, release CD63+CD81+ and TF+ EVs in response to CSE. Cell surface thiols decreased in all cell types upon CSE exposure, whereas depletion of cell surface thiols using bacitracin only triggered EV release by epithelial cells and fibroblasts. The thiol-antioxidant NAC prevented the EV induction by CSE in epithelial cells and fibroblasts. Exposure of epithelial cells to occupational silica nanoparticles and particulate matter (PM) from outdoor air pollution also enhanced EV release. Cell surface thiols were mildly decreased and NAC partly prevented the EV induction for PM10, but not for silica and PM2.5. Taken together, induction of procoagulant EVs is a cell type-specific response to CSE. Moreover, induction of CD63+CD81+ and TF+ EVs in bronchial epithelial cells appears to be a universal response to various respiratory stressors. TF+ EVs may serve as biomarkers of exposure and/or risk in response to respiratory exposures and may help to guide preventive treatment decisions.


Assuntos
Vesículas Extracelulares/metabolismo , Sistema Respiratório/patologia , Tetraspanina 28/metabolismo , Tetraspanina 30/metabolismo , Humanos , Material Particulado
14.
Int J Chron Obstruct Pulmon Dis ; 14: 1465-1484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371934

RESUMO

Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.


Assuntos
Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica/terapia , Medicamentos para o Sistema Respiratório/uso terapêutico , Comportamento de Redução do Risco , Tomada de Decisão Clínica , Comorbidade , Progressão da Doença , Predisposição Genética para Doença , Nível de Saúde , Humanos , Terapia de Alvo Molecular , Seleção de Pacientes , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Medição de Risco , Fatores de Risco , Resultado do Tratamento
15.
J Extracell Vesicles ; 8(1): 1585163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863515

RESUMO

Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed to cigarette smoke extract (CSE). Getting insights into the composition of these EVs will help unravel their functions in homeostasis and smoking-induced pathology. Here, we characterized the proteomic composition of basal and CSE-induced airway epithelial EVs. BEAS-2B cells were left unexposed or exposed to 1% CSE for 24 h, followed by EV isolation using ultrafiltration and size exclusion chromatography. Isolated EVs were labelled with tandem mass tags and their proteomic composition was determined using nano-LC-MS/MS. Tissue factor (TF) activity was determined by a factor Xa generation assay, phosphatidylserine (PS) content by prothrombinase assay and thrombin generation using calibrated automated thrombogram (CAT). Nano-LC-MS/MS identified 585 EV-associated proteins with high confidence. Of these, 201 were differentially expressed in the CSE-EVs according to the moderated t-test, followed by false discovery rate (FDR) adjustment with the FDR threshold set to 0.1. Functional enrichment analysis revealed that 24 proteins of the pathway haemostasis were significantly up-regulated in CSE-EVs, including TF. Increased TF expression on CSE-EVs was confirmed by bead-based flow cytometry and was associated with increased TF activity. CSE-EVs caused faster and more thrombin generation in normal human plasma than control-EVs, which was partly TF-, but also PS-dependent. In conclusion, proteomic analysis allowed us to predict procoagulant properties of CSE-EVs which were confirmed in vitro. Cigarette smoke-induced EVs may contribute to the increased cardiovascular and respiratory risk observed in smokers.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29714636

RESUMO

Extracellular vesicles (EV) are secreted signaling entities that enhance various pathological processes when released in response to cellular stresses. Respiratory exposures such as cigarette smoke and air pollution exert cellular stresses and are associated with an increased risk of several chronic diseases. The aim of this review was to examine the evidence that modifications in EV contribute to respiratory exposure-associated diseases. Publications were searched using PubMed and Google Scholar with the search terms (cigarette smoke OR tobacco smoke OR air pollution OR particulate matter) AND (extracellular vesicles OR exosomes OR microvesicles OR microparticles OR ectosomes). All original research articles were included and reviewed. Fifty articles were identified, most of which investigated the effect of respiratory exposures on EV release in vitro (25) and/or on circulating EV in human plasma (24). The majority of studies based their main observations on the relatively insensitive scatter-based flow cytometry of EV (29). EV induced by respiratory exposures were found to modulate inflammation (19), thrombosis (13), endothelial dysfunction (11), tissue remodeling (6), and angiogenesis (3). By influencing these processes, EV may play a key role in the development of cardiovascular diseases and chronic obstructive pulmonary disease and possibly lung cancer and allergic asthma. The current findings warrant additional research with improved methodologies to evaluate the contribution of respiratory exposure-induced EV to disease etiology, as well as their potential as biomarkers of exposure or risk and as novel targets for preventive or therapeutic strategies.


Assuntos
Poluição do Ar/efeitos adversos , Doença Crônica , Vesículas Extracelulares/efeitos dos fármacos , Doenças Respiratórias/induzido quimicamente , Humanos
17.
Cell Mol Life Sci ; 75(13): 2321-2337, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29594387

RESUMO

Extracellular vesicles (EVs), including microvesicles and exosomes, are emerging as important regulators of homeostasis and pathophysiology. During pro-inflammatory and pro-oxidant conditions, EV release is induced. As EVs released under such conditions often exert pro-inflammatory and procoagulant effects, they may actively promote the pathogenesis of chronic diseases. There is evidence that thiol group-containing antioxidants can prevent EV induction by pro-inflammatory and oxidative stimuli, likely by protecting protein thiols of the EV-secreting cells from oxidation. As the redox state of protein thiols greatly impacts three-dimensional protein structure and, consequently, function, redox modifications of protein thiols may directly modulate EV release in response to changes in the cell's redox environment. In this review article, we discuss targets of redox-dependent thiol modifications that are known or expected to be involved in the regulation of EV release, namely redox-sensitive calcium channels, N-ethylmaleimide sensitive factor, protein disulfide isomerase, phospholipid flippases, actin filaments, calpains and cell surface-exposed thiols. Thiol protection is proposed as a strategy for preventing detrimental changes in EV signaling in response to inflammation and oxidative stress. Identification of the thiol-containing proteins that modulate EV release in pro-oxidant environments could provide a rationale for broad application of thiol group-containing antioxidants in chronic inflammatory diseases.


Assuntos
Vesículas Extracelulares/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Antioxidantes/farmacologia , Humanos , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
18.
BMC Microbiol ; 17(1): 216, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132302

RESUMO

BACKGROUND: During infection, inflammation is partially driven by the release of mediators which facilitate intercellular communication. Amongst these mediators are small membrane vesicles (MVs) that can be released by both host cells and Gram-negative and -positive bacteria. Bacterial membrane vesicles are known to exert immuno-modulatory and -stimulatory actions. Moreover, it has been proposed that host cell-derived vesicles, released during infection, also have immunostimulatory properties. In this study, we assessed the release and activity of host cell-derived and bacterial MVs during the first hours following infection of THP-1 macrophages with the common respiratory pathogens non-typeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa. RESULTS: Using a combination of flow cytometry, tunable resistive pulse sensing (TRPS)-based analysis and electron microscopy, we demonstrated that the release of MVs occurs by both host cells and bacteria during infection. MVs released during infection and bacterial culture were found to induce a strong pro-inflammatory response by naive THP-1 macrophages. Yet, these MVs were also found to induce tolerance of host cells to secondary immunogenic stimuli and to enhance bacterial adherence and the number of intracellular bacteria. CONCLUSIONS: Bacterial MVs may play a dual role during infection, as they can both trigger and dampen immune responses thereby contributing to immune defence and bacterial survival.


Assuntos
Bactérias/imunologia , Vesículas Citoplasmáticas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/imunologia , Macrófagos/imunologia , Bactérias/ultraestrutura , Aderência Bacteriana/imunologia , Citocinas/análise , Vesículas Citoplasmáticas/patologia , Vesículas Citoplasmáticas/ultraestrutura , Haemophilus influenzae/imunologia , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Moraxella catarrhalis/imunologia , Pseudomonas aeruginosa/imunologia , Streptococcus pneumoniae/imunologia , Células THP-1
19.
Sci Rep ; 7(1): 15297, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127410

RESUMO

Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.


Assuntos
Cromatografia em Gel , Células Epiteliais/química , Células Epiteliais/metabolismo , Vesículas Extracelulares/química , Meios de Cultura/química , Humanos , Sefarose/análogos & derivados , Sefarose/química , Células THP-1 , Ultrafiltração
20.
J Extracell Vesicles ; 6(1): 1322454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717419

RESUMO

Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to assess binding, proliferation, migration and pro-inflammatory phenotype of the cells. Platelet EVs firmly bound to resting SMC through the platelet integrin αIIbß3, while binding also occurred in a CX3CL1-CX3CR1-dependent manner after cytokine stimulation. Platelet EVs increased SMC migration comparable to platelet derived growth factor or platelet factor 4 and induced SMC proliferation, which relied on CD40- and P-selectin interactions. Flow-resistant monocyte adhesion to platelet EV-treated SMC was increased compared with resting SMC. Again, this adhesion depended on integrin αIIbß3 and P-selectin, and to a lesser extent on CD40 and CX3CR1. Treatment of SMC with platelet EVs induced interleukin 6 secretion. Finally, platelet EVs induced a synthetic SMC morphology and decreased calponin expression. Collectively, these data indicate that platelet EVs exert a strong immunomodulatory activity on SMC. In particular, platelet EVs induce a switch towards a pro-inflammatory phenotype, stimulating vascular remodelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...