Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931114

RESUMO

The combined approaches between ex situ and in situ conservation are of great importance for threatened species in urgent need of protection. This study aims to develop concrete actions to preserve the relic of 30 adult trees of the Sicilian fir (Abies nebrodensis) from extinction using long-term germplasm conservation in liquid nitrogen (LN, -196 °C). Pollen grains were collected, and their moisture content (MC) was measured. Then, viability (2,3,5-tryphenyl tetrazolium chloride, TTC), in vitro germinability, and enzymatic antioxidant activity (ascorbate peroxidase, APX; catalase, CAT) were evaluated before and after cryopreservation. Seeds collected from mature cones underwent X-ray analysis, and only full seeds were used to excise the zygotic embryos (ZEs) for cryopreservation. The MC percentage of ZEs was determined, and then they were plunged in LN with (+PVS2) or without (-PVS2) Plant Vitrification Solution 2; untreated ZEs were used as a control. Viability (TTC test) and in vitro germination were assessed for all ZEs (+PVS2, -PVS2, and control). Embryogenic callus (EC) lines obtained from mature ZEs were cryopreserved applying the 'encapsulation-dehydration' technique. This study has allowed, after optimizing cryopreservation protocols for pollen, ZEs, and EC of A. nebrodensis, to establish the first cryobank of this endangered species in Polizzi Generosa (Palermo, Italy), inside the 'Madonie Regional Park'. The strategy developed for Sicilian fir conservation will pave the way for similar initiatives for other critically endangered conifer species.

2.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299120

RESUMO

Nowadays, plant genetic resources are often at risk of loss and destruction. Geophytes are herbaceous or perennial species that are annually renewed by bulbs, rhizomes, tuberous roots, or tubers. They are often subject to overexploitation, which, combined with other biotic and abiotic stresses, can make these plants more vulnerable to a decline in their diffusion. As a result, multiple endeavors have been undertaken to establish better conservation strategies. Plant cryopreservation at ultra-low temperatures in liquid nitrogen (-196 °C) has proven to be an effective, long-term, low-cost, and suitable conservation method for many plant species. Over the last two decades, major advances in cryobiology studies have enabled successful explants of multiple genera and types, including pollen, shoot tips, dormant buds, and zygotic and somatic embryos. This review provides an update on recent advances and developments in cryopreservation and its application to medicinal and ornamental geophytes. In addition, the review includes a brief summary of factors limiting the success of bulbous germplasm conservation. The critical analysis underpinning this review will benefit biologists and cryobiologists in their further studies on the optimization of geophyte cryopreservation protocols and will support a more complete and wider application of knowledge in this area.

3.
Plants (Basel) ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501228

RESUMO

Plant genetic resources conservation may be a potential option for the improvement of agricultural crops through modern biotechnologies, and in vitro conservation is a tool available to safeguard plant biodiversity. Ex situ conservation of plant genetic resources using the in vitro procedures is in progress in many countries. The slow growth storage (SGS) technique is a valid in vitro approach to preserve several vegetatively propagated species by controlling the growth and development of plantlets, economizing storage space and labor and reducing costs. Moreover, SGS prolongs the timing between subcultures, lowers the risk of losing germplasm through handling errors, such as contamination problems, and decreases the risk of genetic instability due to the reduction in the number of subcultures. SGS is applied by considering different factors: temperature, light or darkness conditions, medium composition, including mineral or sucrose concentrations, and the presence/absence of plant growth regulators, osmotic agents and growth inhibitors. SGS protocols for some fruit species have been well defined, others require additional research. The present review focuses on the effect of several factors that influence the SGS of in vitro shoots derived from temperate and tropical fruit species during the last ten years.

4.
Plants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34961214

RESUMO

Cryopreservation is known as an applied aspect of cryobiology or the study of life at low temperatures [...].

5.
Plants (Basel) ; 10(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572614

RESUMO

Cryopreservation is a useful tool for the long-term storage of plant genetic resources, and different cryogenic procedures have recently been developed. The present study focused on the use of the Droplet-vitrification (DV) and V cryo-plate protocol for the cryopreservation of Stevia rebaudiana in vitro-derived apical shoot tips and axillary shoot tips. A preliminary test showed that 90 and 120 min PVS2 (Plant Vitrification Solution 2) treatment significantly reduced the regrowth of the explants before immersion in liquid nitrogen (LN). For both procedures tested, the best osmoprotective condition for obtaining a higher regrowth of cryopreserved explants occurred when explants were PVS2 treated for 60 min. After direct immersion in LN, thawing and plating, the highest regrowth recorded was 80% with DV and 93% with V cryo-plate. Moreover, shoot tips proved to be a more suitable material for Stevia cryopreservation. A satisfactory vegetative regrowth was observed in the subcultures following cryopreservation by DV and V cryo-plate cryogenic procedures.

6.
Plants (Basel) ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504018

RESUMO

An optimized cryopreservation protocol for embryonic axes (EAs) of chestnut (Castanea sativa Mill.) has been developed based on the encapsulation-vitrification procedure. EAs of mature seeds were aseptically dissected and encapsulated in alginate beads with or without 0.3% (w/v) activated charcoal (AC). Embedded EAs were dehydrated with Plant Vitrification Solution 2 for different treatment times up to 120 min, followed by direct immersion in liquid nitrogen. Cryopreserved embryonic axes encapsulated with AC showed higher survival (70%) compared to those encapsulated without AC (50%). Sixty-four percent of embryonic axes, from synthetic seeds with AC, subsequently developed as whole plants. Plantlet regrowth was faster in AC-encapsulated EAs and showed enhanced postcryopreservation shoot and root regrowth over 2 cm after five weeks from rewarming. Results indicate that encapsulation-vitrification with activated charcoal added to the beads is an effective method for the long-term preservation of Castaneasativa embryonic axes.

7.
Plants (Basel) ; 9(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635440

RESUMO

Goji (Lycium barbarum L.) has recognized nutritive and antioxidant properties and many products are commercialized for health in food market. Besides its food use, goji has been the subject of more than 2000 years of traditional Chinese medicine, using berries, root bark, and leaves. Here, the potential of the liquid culture in temporary immersion system (TIS) by using the bioreactor PlantformTM was tested for the large-scale production of high-quality goji shoots and the subsequent production of total phenols and flavonoids. The three tested immersion cycles differently influenced the shoot quality in terms of proliferation and hyperhydricity. The best immersion cycle (time and frequency) was proven to have the shortest daily immersion time (6 min every 24 h) which ensured good levels of relative growth and multiplication rate, very limited onset of hyperydricity, and the longest shoots, promoting direct rooting after only 30 days of culture. In comparison with the semisolid culture, the TIS culture resulted in an increase of the total phenolic content (TPC) and in a lower value of the total flavonoid content (TFC). However, considering the higher quantity of biomass produced in the PlantformTM bioreactor, the difference in terms of TFC productivity between semisolid medium and TIS liquid culture was proven to be statistically equivalent.

8.
3 Biotech ; 8(7): 317, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30023149

RESUMO

Olea europaea L. cv Canino shoots were micropropagated to test two different culture systems: (1) on conventional semi-solid medium in glass jars and (2) in liquid culture in a Plantform™ bioreactor. The temporary immersion system, Plantform™, is a new propagation approach that uses liquid culture, where shoots undergo periodic immersion in liquid medium alternated with dry periods, avoiding gas accumulation through forced ventilation. This study proposes a protocol to improve in vitro propagation of olive reducing production costs. Our findings revealed that olive shoots propagated in Plantform™, with an immersion frequency of 8 min every 16 h and additional ventilation, showed good adaptability and better growth rates than those cultured in conventional system. Overall, the Plantform™ improves in vitro culture of 'Canino', showing higher proliferation, shoot length and better vigour of shoots. Moreover, the study found no significant differences in shoot length when 5 or 10 µM zeatin was applied in Plantform™ (3.04 and 3.13 cm, respectively); it is, therefore, possible to achieve efficient olive proliferation also with half hormone concentration. The positive performance of the bioreactor approach was also confirmed by Relative Growth Rate index. This is the first documented study of the Plantform™ technique for olive propagation.

9.
Methods Mol Biol ; 11013: 89-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23179692

RESUMO

Persimmon (Diospyros kaki Thunb.) is a temperate fruit tree species diffused in all continents. The traditional propagation method adopted by the nursery industry is based on budding/grafting scion cultivars on seedlings from D. kaki, Diospyros lotus, and Diospyros virginiana, the most important species used as rootstock, reproduced by seeds since they are not easy to root. Furthermore, most of nonastringent cultivars of persimmon are not compatible with D. lotus, a rootstock largely utilized because of its hardiness and frost resistance. The main in vitro tissue culture techniques, developed for persimmon, deal with direct regeneration (from dormant buds and root tips), and indirect regeneration through callus from dormant buds, apexes, and leaves. The bottlenecks of micropropagation are (1) the recalcitrance of many cultivars to in vitro establishment, (2) the low multiplication ratio of D. kaki compared to other fruit tree species, (3) the very low rooting ability of ex novo microcuttings both from direct and indirect regeneration, (4) the high sensitivity to transplant from in vitro to in vivo conditions. The development of reliable in vitro regeneration procedures is likely to play a key role for production of both clonal rootstocks and self-rooted cultivars. The general protocol for micropropagation of persimmon reported here is based on the establishment of winter dormant buds in vitro, shoot development, multiplication and elongation, and shoot rooting, using cytokinins (BA or zeatin) in a MS media along with an auxinic pretreatment for rooting induction.


Assuntos
Técnicas de Cultura/métodos , Diospyros/crescimento & desenvolvimento , Aclimatação , Meios de Cultura/química , Diospyros/citologia , Diospyros/fisiologia , Germinação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Esterilização , Árvores/crescimento & desenvolvimento
10.
Biotechnol Adv ; 31(2): 175-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23022736

RESUMO

This paper presents the advances made over the last decade in cryopreservation of economically important vegetatively propagated fruit trees. Cryopreservation protocols have been established using both dormant buds sampled on field-grown plants and shoot tips sampled on in vitro plantlets. In the case of dormant buds, scions are partially dehydrated by storage at -5 °C, and then cooled slowly to -30 °C using low cooling rates (c.a. 1 °C/h) before immersion in liquid nitrogen. After slow rewarming and rehydration of samples, regrowth takes place either through grafting of buds on rootstocks or excision of apices and inoculation in vitro. In the case of shoot tips of in vitro plantlets, the cryopreservation techniques employed are the following: controlled rate cooling procedures involving slow prefreezing followed by immersion in liquid nitrogen or vitrification-based procedures including encapsulation-dehydration, vitrification, encapsulation-vitrification and droplet-vitrification. The current status of cryopreservation for a series of fruit tree species including Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis is presented. Routine application of cryopreservation for long-term germplasm storage in genebanks is currently limited to apple and pear, for which large cryopreserved collections have been established at NCGRP, Fort Collins (USA), using dormant buds and in vitro shoot tips, respectively. However, there are a growing number of examples of pilot scale testing experiments under way for different species in various countries. Progress in the further development and application of cryopreservation techniques will be made through a better understanding of the mechanisms involved in the induction of tolerance to dehydration and cryopreservation in frozen explants.


Assuntos
Produtos Agrícolas , Criopreservação/métodos , Brotos de Planta , Actinidia , Diospyros , Frutas , Malus , Olea , Prunus , Pyrus , Vitis , Vitrificação
11.
Plant Sci ; 181(1): 47-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21600397

RESUMO

A three-day pretreatment of olive somatic embryos (SE) with 0.75 M sucrose, combined with cryoprotection (0.5M DMSO, 1M sucrose, 0.5M glycerol and 0.009 M proline) and controlled rate cooling, supported regrowth (as 34.6% fresh weight gain) and resumption of embryo development after cryopreservation. Pretreatment with mannitol or sorbitol did not support regrowth. Profiles of sugars, proline, antioxidant enzymes, Reactive oxygen species (ROS), secondary oxidation products and ethylene were constructed for the most successful (0.75 M) pretreatment series. Sucrose was the optimal pretreatment for supporting recovery, it also elevated glutathione reductase (GR) activity compared to controls, whereas superoxide dismutase (SOD), catalase and guaiacol peroxidase activities remained relatively unchanged. Superoxide dismutase activity was higher in SE pretreated with sucrose, compared with those pretreated with polyols; H(2)O(2) was enhanced in SE pretreated with sorbitol and sucrose compared to mannitol. The overall trend for ethylene and OH production revealed their levels were highest in SE pretreated with polyols albeit, for individual treatments this was not always the case. Generally, pretreatments did not significantly change embryo secondary oxidation profiles of ThioBarbituric Acid Reactive Substances (TBARS) and Schiff's bases. In combination these studies suggest oxidative processes may influence regrowth of cryopreserved olive SE and that optimal pretreatments could, in part, increase tolerance by an overall enhancement of endogenous antioxidants (particularly GR), proline and sugars.


Assuntos
Antioxidantes/metabolismo , Criopreservação , Olea/crescimento & desenvolvimento , Osmose , Estresse Oxidativo , Catalase/metabolismo , Etilenos/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Manitol/metabolismo , Olea/enzimologia , Olea/metabolismo , Peroxidase/metabolismo , Técnicas de Embriogênese Somática de Plantas , Polímeros/metabolismo , Prolina/análise , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/análise , Sorbitol/metabolismo , Sacarose/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...