Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 160: 105406, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970295

RESUMO

Cannabis is the most widely used illegal drug during pregnancy, however, the effects of gestational exposure to Cannabis smoke (CS) on the central nervous system development remain uncharacterised. This study investigates the effects of maternal CS inhalation on brain function in the offspring. Pregnant mice were exposed daily to 5 min of CS during gestational days (GD) 5.5-17.5. On GD 18.5 half of the dams were euthanized for foetus removal. The offspring from the remaining dams were euthanized on postnatal days (PND) 20 and 60 for evaluation. Brain volume, cortex cell number, SOX2, histone-H3, parvalbumin, NeuN, and BDNF immunoreactivity were assessed in all groups. In addition, levels of NeuN, CB1 receptor, and BDNF expression were assessed and cortical primary neurons from rats were treated with Cannabis smoke extract (CSE) for assessment of cell viability. We found that male foetuses from the CS exposed group had decreased brain volume, whereas mice at PND 60 from the exposed group presented with increased brain volume. Olfactory bulb and diencephalon volume were found lower in foetuses exposed to CS. Mice at PND 60 from the exposed group had a smaller volume in the thalamus and hypothalamus while the cerebellum presented with a greater volume. Also, there was an increase in cortical BDNF immunoreactivity in CS exposed mice at PND 60. Protein expression analysis showed an increase in pro-BDNF in foetus brains exposed to CS. Mice at PND 60 presented an increase in mature BDNF in the prefrontal cortex (PFC) in the exposed group and a higher CB1 receptor expression in the PFC. Moreover, hippocampal NeuN expression was higher in adult animals from the exposed group. Lastly, treatment of cortical primary neurons with doses of CSE resulted in decreased cell viability. These findings highlight the potential negative neurodevelopmental outcomes induced by gestational CS exposure.


Assuntos
Cannabis , Alucinógenos , Drogas Ilícitas , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Cannabis/efeitos adversos , Cannabis/metabolismo , Feminino , Histonas/metabolismo , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/metabolismo , Masculino , Camundongos , Parvalbuminas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo , Fumaça/efeitos adversos
2.
Environ Int ; 145: 106150, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039876

RESUMO

Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1ß, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Animais , Brasil , Dano ao DNA , Reparo do DNA , Inflamação/induzido quimicamente , Camundongos , Estresse Oxidativo , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Neurotoxicology ; 79: 127-141, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450181

RESUMO

Air pollution is a public health concern that has been associated with adverse effects on the development and functions of the central nervous system (CNS). However, studies on the effects of exposure to pollutants on the CNS across the entire developmental period still remain scarce. In this study, we investigated the impacts of prenatal and/or postnatal exposure to fine particulate matter (PM2.5) from São Paulo city, on the brain structure and behavior of juvenile male mice. BALB/c mice were exposed to PM2.5 concentrated ambient particles (CAP) at a daily concentration of 600 µg/m³ during the gestational [gestational day (GD) 1.5-18.5] and the postnatal periods [postnatal day (PND) 22-90] to filtered air (FA) in both periods (FA/FA), to CAP only in the postnatal period (FA/CAP), to CAP only in the gestational period (CAP/FA), and to CAP in both periods (CAP/CAP). Behavioral tests were performed when animals were at PND 30 and PND 90. Glial activation, brain volume, cortical neuron number, serotonergic and GABAergic receptors, as well as oxidative stress, were measured. Mice at PND 90 presented greater behavioral changes in the form of greater locomotor activity in the FA-CAP and CAP-CAP groups. In general, these same groups explored objects longer and the CAP-FA group presented anxiolytic behavior. There was no difference in total brain volume among groups, but a lower corpus callosum (CC) volume was observed in the CAP-FA group. Also, the CAP-CAP group presented an increase in microglia in the cortex and an increased in astrocytes in the cortex, CC, and C1A and dentate gyrus of hippocampus regions. Gene expression analysis showed a decrease in BDNF in the hippocampus of CAP-CAP group. Treatment of immortalized glial cells with non-cytotoxic doses of ambient PM2.5 increased micronuclei frequencies, indicating genomic instability. These findings highlight the potential for negative neurodevelopmental outcomes induced by exposure to moderate levels of PM2.5 in Sao Paulo city.


Assuntos
Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Idade Gestacional , Masculino , Camundongos Endogâmicos BALB C , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Gravidez , Ratos
4.
Toxicology ; 376: 94-101, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234314

RESUMO

The prevalence of marijuana use among pregnant women is high. However, the effects on gestation and fetal development are not well known. Epidemiological and experimental studies present conflicting results because of the route of administration, dose, time of exposure, species used, and how Cannabis toxicity is tested (prepared extracts, specific components, or by pyrolysis). In this study, we experimentally investigated the effects of maternal inhalation of Cannabis sativa smoke representing as nearly as possible real world conditions of human marijuana use. Pregnant mice (n=20) were exposed (nose-only) daily for 5min to marijuana smoke (0.2g of Cannabis) from gestational day (GD) 5.5 to GD17.5 or filtered air. Food intake and maternal weight gain were recorded. Ultrasound biomicroscopy was performed on 10.5 and 16.5dpc.On GD18.5, half of the dams were euthanized for the evaluation of term fetus, placenta, and resorptions. Gestation length, parturition, and neonatal outcomes were evaluated in the other half. Five minutes of daily (low dose) exposure during pregnancy resulted in reduced birthweight, and litter size was not altered; however, the number of male pups per litter was higher. Besides, placental wet weight was increased and fetal to placental weight ratio was decreased in male fetuses, showing a sex-specific effect. At the end of gestation, females from the Cannabis group presented reduced maternal net body weight gain, despite a slight increase in their daily food intake compared to the control group. In conclusion, our results indicate that smoking marijuana during pregnancy even at low doses can be embryotoxic and fetotoxic.


Assuntos
Cannabis/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Fumar Maconha/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...