Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38627901

RESUMO

Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity.

2.
J Phys Chem A ; 127(46): 9695-9704, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939355

RESUMO

The predictive ability of density functional theory is fundamental to its usefulness in chemical applications. Recent work has compared solution-phase enthalpies of activation for metal-ligand bond dissociation to enthalpies of reaction for bond dissociation, and the present work continues those comparisons for 43 density functional methods. The results for ligand dissociation enthalpies of 30 metal-ligand complexes tested in this work reveal significant inadequacies of some functionals as well as challenges from the dispersion corrections to some functionals. The analysis presented here demonstrates the excellent performance of a recent density functional, M11plus, which contains nonlocal rung-3.5 correlation. We also find a good agreement between theory and experiment for some functionals without empirical dispersion corrections such as M06, r2SCAN, M06-L, and revM11, as well as good performance for some functionals with added dispersion corrections such as ωB97X-D (which always has a correction) and BLYP, B3LYP, CAM-B3LYP, and PBE0 when the optional dispersion corrections are added.

3.
ACS Appl Mater Interfaces ; 15(13): 16593-16597, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943895

RESUMO

Metal-organic frameworks (MOFs) are typically assembled by bridging metal centers with organic linkers for various applications, including providing robust support for heterogeneous catalysts for CO2 reduction. In this study, we have demonstrated the solubilization of a MOF tethered to a CO2-reducing electrocatalyst and studied its fundamental electrochemistry in THF solvent using infrared spectroelectrochemistry (IR-SEC). The fundamental electrochemical properties of this immobilized catalyst were compared to that of its homogeneous counterpart. This approach provides a foundation for future experimental studies to bridge the gap between homogeneous and heterogeneous electrocatalysis.

4.
Inorg Chem ; 61(50): 20699-20708, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36484599

RESUMO

Manganese tricarbonyl diimine complexes bearing pyridine and imidazole ligands have been prepared as electrocatalysts for proton reduction using acetic acid as the proton source. The electron-donor ability of the diimine ligand is found to play an important role in determining the efficiency of the electrocatalysts with [MnBr(pybz)(CO)3] (pybz = 2-(2-pyridyl)benzimidazole) exhibiting the lowest overpotential (0.28 V) toward proton reduction. The [Mn(pybz)(CO)3(MeCN)]+ cationic complex prepared via debromination of [MnBr(pybz)(CO)3] by a silver salt has also been shown to catalyze proton reduction upon its electrochemical reduction. A neutral complex [Mn(pyridine-benzimidazolate)(CO)3(MeCN)], which can be synthesized by reacting [MnBr(pybz)(CO)3] with a strong base, has been detected using IR-SEC (infrared spectroelectrochemistry) as an intermediate species in the catalytic process. Using [MnBr(pybz)(CO)3] as the model electrocatalyst, we have carried out density functional calculations to propose a proton reduction mechanism consistent with our experimental observations.

5.
ACS Appl Mater Interfaces ; 12(2): 3171-3178, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829551

RESUMO

Transition-metal catalysts immobilized on the surface of Metal-organic frameworks (MOFs) are being utilized for an ever-increasing number of reactions ranging from couplings to olefin oligomerization. While these reactions are usually performed in solution, unlike their homogeneous counterparts, the insolubility of the MOF systems makes it difficult to obtain detailed mechanistic information by in situ spectroscopic analysis in solution. In this report, we present a synthetic method to solubilize these systems by grafting oligomers on the surface of the MOF particles, making it possible to characterize these species by transmission infrared (IR) spectroscopy. The fundamental photochemistry of these catalysts was also studied and compared to that of their homogeneous counterparts. This work establishes a proof of principle for in-solution monitoring of heterogeneous catalysts.

6.
Inorg Chem ; 56(18): 11244-11253, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28872840

RESUMO

The photochemistry of two Mn(bpy)(CO)3X complexes (X = PhCC-, Br-) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO)2] affords the ionic complex [1-(MeCN)2]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br-. Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.

7.
Inorg Chem ; 56(18): 10926-10931, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28846403

RESUMO

A pentacoordinated triphosphine benzenedithiolatoiron(II) complex containing a vacant site for binding has been prepared and characterized. The complex is found to be a robust proton reduction catalyst with an overpotential of 0.56 V and a turnover frequency of 2900 s-1 with respect to 0.28 M acetic acid as the proton source. A mechanism describing the electroproton reduction process has been proposed.

8.
J Org Chem ; 81(24): 12106-12115, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978726

RESUMO

A palladium-catalyzed multicomponent method for the synthesis of ß-lactams from imines, aryl halides, and CO has been developed. This transformation proceeds via two tandem catalytic carbonylation reactions mediated by Pd(PtBu3)2 and provides a route to prepare these products from five separate reagents. A diverse range of polysubstituted ß-lactams can be generated by systematic variation of the substrates. This methodology can also be extended to the use of iodo-substituted imines to produce novel spirocyclic ß-lactams in good yields and selectivity.

9.
Chemistry ; 22(42): 15107-15118, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27608423

RESUMO

We describe herein computational studies on the unusual ability of Pd(PtBu3 )2 to catalyze formation of highly reactive acid chlorides from aryl halides and carbon monoxide. These show a synergistic role of carbon monoxide in concert with the large cone angle PtBu3 that dramatically lowers the barrier to reductive elimination. The tertiary structure of the phosphine is found to be critical in allowing CO association and the generation of a high energy, four coordinate (CO)(PR3 )Pd(COAr)Cl intermediate. The stability of this complex, and the barrier to elimination, is highly dependent upon phosphine structure, with the tertiary steric bulk of PtBu3 favoring product formation over other ligands. These data suggest that even difficult reductive eliminations can be rapid with CO association and ligand manipulation. This study also represents the first detailed exploration of all the steps involved in palladium-catalyzed carbonylation reactions with simple phosphine ligands, including the key rate-determining steps and palladium(0) catalyst resting state in carbonylations.

10.
Chemistry ; 22(36): 12752-60, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27482938

RESUMO

The mechanism and energetics of CO, 1-hexene, and 1-hexyne substitution from the complexes (SBenz)2 [Fe2 (CO)6 ] (SBenz=SCH2 Ph) (1-CO), (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexene)] (1-(η(2) -1-hexene)), and (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexyne)] (1-(η(2) -1-hexyne)) were studied by using time-resolved infrared spectroscopy. Exchange of both CO and 1-hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate-determining step in both cases is assumed to be the rotation of the Fe(CO)2 L (L=CO or 1-hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1-hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN 1) and associative (SN 2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (µ-pdt)[Fe(CO)3 ]2 (pdt=S(CH2 )3 S) underscores the unique characteristics of a three-atom S-S linker in the active site of diiron hydrogenases.


Assuntos
Alcenos/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Proteínas Ferro-Enxofre/metabolismo , Cinética , Ligantes , Modelos Moleculares , Espectrofotometria Infravermelho , Termodinâmica
11.
Dalton Trans ; 45(35): 13766-78, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27477470

RESUMO

We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more computationally expensive calculations to provide the "target" values. With an aim of presenting the 'best suited functional/functionals' for calculations involving the metal-ligand bond dissociation enthalpies (BDEs) of organometallic complexes, we utilized a database of 30 experimental metal-ligand bond dissociation enthalpies, and tested for 101 density functionals and 2 ab initio methods, all with a large basis set. We find the most accurate functional is M06 with a mean unsigned error (MUE) of 1.6 kcal mol(-1), followed closely by M06L, ωB97XD, PW91PW91 and MPWB95 with MUEs of 1.7, 1.8, 2.0, and 2.1 kcal mol(-1) respectively. Other top performers are B3LYP-GD3, BLYP-GD3, PBEPBE, CAM-B3LYP-GD3, CAM-B3LYP-GD3BJ, B3LYP-GD3BJ and MN12L; all predict BDEs with MUEs in the range of 2.2 to 2.5 kcal mol(-1). Adding solvent corrections to the gas-phase BDE calculations for these top twelve functionals do not significantly change the MUE value. The well-known and widely used functional B3LYP shows very poor performance for this specific property. However, the empirical dispersion correction to the B3LYP functional has significantly improved its performance in predicting BDEs. It is also worth noting that several modern range-separated functionals predict the bond dissociation enthalpies with an error of 2-3 kcal mol(-1).

12.
Dalton Trans ; 45(31): 12292-6, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436484

RESUMO

Photolysis of an iron tricarbonyl complex in the presence of 1-hexyne results in the activation of the terminal C-H bond to yield an iron-alkynyl species. The reaction proceeds through a single transition state with an activation enthalpy of 13.5 kcal mol(-1). The resulting molecule may have potential as a C-C bond formation reagent.

13.
Inorg Chem ; 55(2): 964-73, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26716767

RESUMO

Studies focused on the dehydrogenation of amine-borane by diiron complexes that serve as well-characterized rudimentary models of the diiron subsite in [FeFe]-hydrogenase are reported. Complexes of formulation (µ-SCH2XCH2S)[Fe(CO)3]2, with X = CH2, CMe2, CEt2, NMe, NtBu, and NPh, 1-CO through 6-CO, respectively, were determined to be photocatalysts for release of H2 gas from a solution of H3B ← NHMe2 (B:A(s)), dissolved in THF. The thermal displacement of the tertiary amine-borane, H3B ← NEt3 (B:A(t)) from photochemically generated (µ-SCH2XCH2S)[Fe(CO)3][Fe(CO)2(µ-H)(BH2-NEt3)], 1-B:A(t) through 6-B:A(t), by P(OEt)3 was monitored by time-resolved FTIR spectroscopy. Rates and activation barriers for this substitution reaction were consistent with a dissociative mechanism for the alkylated bridgehead species 2-CO through 6-CO, and associative or interchange for 1-CO. DFT calculations supported an intermediate [I] for the dissociative process featuring a coordinatively unsaturated diiron complex stabilized by an agostic interaction between the metal center and the C-H bond of an alkyl group on the central bridgehead atom of the SRS linker. The rate of H2 production from the initially formed 1-B:A(s) through 6-B:A(s) complexes was inversely correlated with the lifetime of the analogous 1-B:A(t) through 6-B:A(t) adducts. Possible mechanisms are presented which feature involvement of the pendent nitrogen base as well as a separate mechanism for the all carbon bridgeheads.

14.
Inorg Chem ; 54(23): 11441-9, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26554575

RESUMO

Dissolution of M(CO)3(Br)(L(Ar)) [L(Ar) = (2,6-Cl2-C6H3-NCMe)2CH2] in either acetonitrile [M = Mn, Re] or benzonitrile (M = Re) results in C-C coupling of the nitrile to the diimine ligand. When reacted with acetonitrile, the intermediate adduct [M(CO)3(NCCH3)(L(Ar))]Br forms and undergoes an intramolecular C-C coupling reaction between the nitrile carbon and the methylene carbon of the ß-diimine ligand.

15.
Inorg Chem ; 53(23): 12348-59, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25406031

RESUMO

DFT methods are used to calculate the ionization energy (IE) and electron affinity (EA) trends in a series of pincer ligated d(8)-Ir((tBu4)PXCXP) complexes (1-X), where C is a 2,6-disubstituted phenyl ring with X = O, NH, CH2, BH, S, PH, SiH2, and GeH2. Both C2v and C2 geometries are considered. Two distinct σ-type ((2)A1 or (2)A) and π-type ((2)B1 or (2)B) electronic states are calculated for each of the free radical cation and anion. The results exhibit complex trends, but can be satisfactorily accounted for by invoking a combination of electronegativity and specific π-orbital effects. The calculations are also used to study the effects of varying X on the thermodynamics of oxidative H2 addition to 1-X. Two closed shell singlet states differentiated in the C2 point group by the d(6)-electon configuration are investigated for the five-coordinate Ir(III) dihydride product. One electronic state has a d(6)-(a)(2)(b)(2)(b)(2) configuration and a square pyramidal geometry, the other a d(6)-(a)(2)(b)(2)(a)(2) configuration with a distorted-Y trigonal bipyramidal geometry. No simple correlations are found between the computed reaction energies of H2 addition and either the IEs or EAs. To better understand the origin of the computed trends, the thermodynamics of H2 addition are analyzed using a cycle of hydride and proton addition steps. The analysis highlights the importance of the electron and hydride affinities, which are not commonly used in rationalizing trends of oxidative addition reactions. Thus, different complexes such as 1-O and 1-CH2 can have very similar reaction energies for H2 addition arising from opposing hydride and proton affinity effects. Additional calculations on methane C-H bond addition to 1-X afford reaction and activation energy trends that correlate with the reaction energies of H2 addition leading to the Y-product.

16.
Inorg Chem ; 53(8): 4081-8, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24689898

RESUMO

The manganese tricarbonyl complex fac-Mn(Br)(CO)3((i)Pr2Ph-DAB) (1) [(i)Pr2Ph-DAB = (N,N'-bis(2,6-di-isopropylphenyl)-1,4-diaza-1,3-butadiene)] was synthesized from the reaction of Mn(CO)5Br with the sterically encumbered DAB ligand. Compound 1 exhibits rapid CO release under low power visible light irradiation (560 nm) suggesting its possible use as a photoCORM. The reaction of compound 1 with TlPF6 in the dark afforded the manganese(I) tetracarbonyl complex, [Mn(CO)4((i)Pr2Ph-DAB)][PF6] (2). While 2 is comparatively more stable than 1 in light, it demonstrates high thermal reactivity such that dissolution in CH3CN or THF at room temperature results in rapid CO loss and formation of the respective solvate complexes. This unusual reactivity is due to the large steric profile of the DAB ligand which results in a weak Mn-CO binding interaction.

17.
Chem Commun (Camb) ; 50(44): 5874-7, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24756069

RESUMO

Photolysis of CpRe(CO)3 in the presence of H3BNEt3 yields the trans-CpRe(CO)2(H)2 complex. This preliminary finding presents a rare example of transition metal mediated dehydrogenation of a tertiary amine-borane and suggests that the abstracted hydrogens may be stored in the form of metal hydride complexes.

18.
Inorg Chem ; 52(21): 12655-60, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24128341

RESUMO

The thermal displacement of methyl acrylate from Fe(CO)4(η(2)-CH2=CHCOOMe) by phosphine ligands is a relatively slow reaction requiring several hours at elevated temperatures. In the present study, it is observed that photolysis of the tetracarbonyl complex with UV light activates the process such that the reaction is complete within a few seconds. This rate enhancement is due to the formation of an intermediate η(4) complex where the organic C=O and C=C units of methyl acrylate occupy axial and equatorial coordination sites on the Fe center, respectively, following photochemical CO loss. The displacement of methyl acrylate from this photolytically generated intermediate is facile with a remarkably low barrier of 8.7 kcal/mol. Density functional theory calculations support these experimental observations.

19.
Dalton Trans ; 42(19): 6720-3, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23584745

RESUMO

Photolysis of BzCr(CO)3 and TpMn(CO)3 in the presence of H3B·NEt3 yields a metal-borane σ complex. Displacement of the weakly coordinated borane by P(OEt)3 proceeds by a dissociative mechanism and an Eyring analysis yields the first estimate of 20 kcal mol(-1) for the strength of this novel interaction.

20.
Inorg Chem ; 52(9): 5438-47, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23614349

RESUMO

The synthesis, spectroscopic, and X-ray structural studies of acrylic acid complexes of iron and ruthenium tetracarbonyls are reported. In addition, the deprotonated η(2)-olefin bound acrylic acid derivative of iron as well as its alkylated species were fully characterized by X-ray crystallography. Kinetic data were determined for the replacement of acrylic acid, acrylate, and methylacrylate for the group 8 metal carbonyls by triphenylphosphine. These processes were found to be first-order in the concentration of metal complex with the rates for dissociative loss of the olefinic ligands from ruthenium being much faster than their iron analogues. However, the ruthenium derivatives afforded formation of primarily mono-phosphine metal tetracarbonyls, whereas the iron complexes led largely to trans-di-phosphine tricarbonyls. This difference in behavior was ascribed to a more stable spin crossover species (3)Fe(CO)4 which undergoes rapid CO loss to afford the bis phosphine derivative. The activation enthalpies for dissociative loss of the deprotonated η(2)-bound acrylic acid ligand were found to be larger than their corresponding values in the protonated derivatives. For example, for dissociative loss of the protonated and deprotonated acrylic acid derivatives of iron(0) the ΔH(‡) values determined were 28.0 ± 1.2 and 34.1 ± 1.5 kcal·mol(-1), respectively. Density functional theory (DFT) computations of the bond dissociation energies (BDEs) in these acrylic acids and closely related complexes were in good agreement with enthalpies of activation for these ligand substitution reactions, supportive of a dissociative mechanism for olefin displacement. Processes related to catalytic production of acrylic acid from CO2 and ethylene are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...