Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931944

RESUMO

Exosomes, nanoscale vesicles derived from human cells, offer great promise for targeted drug delivery. However, their inherent diversity and genetic modifications present challenges in terms of ensuring quality in clinical use. To explore solutions, we employed advanced gene fusion and transfection techniques in human 293T cells to generate two distinct sets of genetically engineered samples. We used dual-omics analysis, combining transcriptomics and proteomics, to comprehensively assess exosome quality by comparing with controls. Transcriptomic profiling showed increased levels of engineering scaffolds in the modified groups, confirming the success of genetic manipulation. Through transcriptomic analysis, we identified 15 RNA species, including 2008 miRNAs and 13,897 mRNAs, loaded onto exosomes, with no significant differences in miRNA or mRNA levels between the control and engineered exosomes. Proteomics analysis identified changes introduced through genetic engineering and over 1330 endogenous exosome-associated proteins, indicating the complex nature of the samples. Further pathway analysis showed enrichment in a small subset of cellular signaling pathways, aiding in our understanding of the potential biological impacts on recipient cells. Detection of over 100 cow proteins highlighted the effectiveness of LC-MS for identifying potential contaminants. Our findings establish a dual-omics framework for the quality control of engineered exosome products, facilitating their clinical translation and therapeutic applications in nanomedicine.

2.
Adv Drug Deliv Rev ; 188: 114465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878794

RESUMO

Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and identify new directions in developing EV-based therapies and their potential impact on clinical medicine.


Assuntos
Produtos Biológicos , Exossomos , Vesículas Extracelulares , Doenças por Armazenamento dos Lisossomos , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/fisiologia , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Lisossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...