Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-22, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965904

RESUMO

The present investigation examines the antimicrobial and antifungal characteristics of natural deep eutectic solvents (NADES) and apple vinegar in relation to a diverse array of bacterial and fungal strains. The clinical bacterial strains, including gram-negative and gram-positive, and the fungal pathogen Candida albicans, were subjected to solid medium diffusion to determine the inhibitory effects of these compounds. The results show that NADES has superior antimicrobial and antifungal action compared to apple vinegar. The observed inhibitory zones for apple vinegar and NADES varied in length from 16.5 to 24.2 and 16 to 52.5 mm, respectively. The results obtained indicate that no synergy is observed for this mixture (50% AV + 50% NADES). The range of values for bactericidal concentrations (MBC) and minimal inhibitory concentrations (MIC) was 0.0125 to 0.2 and 0.0125 to 0.4 µl/ml, respectively. Antibacterial and antifungal chemicals may be found in apple vinegar and NADES, with NADES offering environmentally safe substitutes for traditional antibiotics. Additional investigation is suggested to refine these compounds for a wide range of bacteria, which could create antimicrobial solutions that are both highly effective and specifically targeted, thereby offering extensive potential in medicine and the environment.

2.
ACS Omega ; 9(26): 27945-27962, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973843

RESUMO

This study investigates the inhibitory effects of 2-(2,4,5-trimethoxy benzylidene) hydrazine carbothioamide (TMBHCA) on the corrosion of carbon steel in a 1 M HCl solution across various concentrations. The assessment employs a comprehensive approach, combining gravimetric analysis, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS). Additionally, scanning electron microscopy (SEM) and quantum chemical calculations are employed to provide a thorough understanding of the corrosion inhibition mechanism. The influence of exposure time on mild steel corrosion is systematically examined. Results reveal a remarkable reduction in the corrosion rate of steel, with TMBHCA demonstrating its highest inhibition efficiency of 97.8% at 200 ppm. Potentiodynamic polarization studies characterize TMBHCA as a mixed-type inhibitor, while Nyquist plots illustrate increased charge transfer resistance and decreased double-layer capacitance with escalating TMBHCA concentrations. Consistency between weight loss measurements and electrochemical findings further validates the efficacy of TMBHCA as a corrosion inhibitor. SEM images substantiate and visually support the obtained results. An immersion test conducted at 25 °C over 28 days showcases a notable enhancement in TMBHCA efficiency (IE%) from 45.16% to 92.43% at 200 ppm as the immersion period progresses from 1 day to 28 days. This improvement is attributed to the augmented adsorption of inhibitor molecules on the steel surface over time. These comprehensive findings significantly contribute to our understanding of TMBHCA's corrosion inhibition behavior, emphasizing its potential as a highly efficient corrosion inhibitor for diverse industrial applications.

3.
RSC Adv ; 14(30): 21745-21762, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38979473

RESUMO

This review focuses on exploring the intricate relationship between the catalyst particle size and shape on a nanoscale level and how it affects the performance of reactions. Drawing from decades of research, valuable insights have been gained. Intentionally shaping catalyst particles makes exposing a more significant percentage of reactive facets possible, enabling the control of overactive sites. In this study, the effectiveness of Co3O4 nanoparticles (NPs) with nanometric size as a catalyst is examined, with a particular emphasis on the coordination patterns between oxygen and cobalt atoms on the surface of these NPs. Investigating the correlation between the structure and reactivity of the exposed NPs reveals that the form of Co3O4 with nanometric size can be modified to tune its catalytic capabilities finely. Morphology-dependent nanocatalysis is often attributed to the advantageous exposure of reactive crystal facets accumulating numerous active sites. However, experimental evidences highlight the importance of considering the reorganization of NPs throughout their actions and the potential synergistic effects between nearby reactive and less-active aspects. Despite the significant role played by the atomic structure of Co3O4 NPs with nanometric size, limited attention has been given to this aspect due to challenges in high-resolution characterizations. To bridge this gap, this review strongly advocates for a comprehensive understanding of the relationship between the structure and reactivity through real-time observation of individual NPs during the operation. Proposed techniques enable the assessment of dimensions, configuration, and interfacial arrangement, along with the monitoring of structural alterations caused by fluctuating temperature and gaseous conditions. Integrating this live data with spectroscopic methods commonly employed in studying inactive catalysts holds the potential for an enhanced understanding of the fundamental active sites and the dynamic behavior exhibited in catalytic settings.

4.
Fitoterapia ; 177: 106055, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838822

RESUMO

This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.

5.
Int J Biol Macromol ; 275(Pt 1): 133468, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945341

RESUMO

This research focused on developing pH-regulated intelligent networks using quince and mimosa seed mucilage through aqueous polymerization to sustain Capecitabine release while overcoming issues like short half-life, high dosing frequency, and low bioavailability. The resulting MSM/QSM-co-poly(MAA) hydrogel was evaluated for several parameters, including complex structure formation, stability, pH sensitivity, morphology, and elemental composition. FTIR, DSC, and TGA analyses confirmed the formation of a stable, complex cross-linked network, demonstrating excellent stability at elevated temperatures. SEM analysis revealed the hydrogels' smooth, fine texture with porous surfaces. PXRD and EDX results indicated the amorphous dispersion of Capecitabine within the network. The QMM9 formulation achieved an optimal Capecitabine loading of 87.17 %. The gel content of the developed formulations ranged from 65.21 % to 90.23 %. All formulations exhibited excellent swelling behavior, with ratios between 65.91 % and 91.93 % at alkaline pH. In vitro dissolution studies indicated that up to 98 % of Capecitabine was released after 24 h at pH 7.4, demonstrating the potential for sustained release. Furthermore, toxicological evaluation in healthy rabbits confirmed the system's safety, non-toxicity, and biocompatibility.

6.
Environ Sci Pollut Res Int ; 31(31): 43673-43686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38904874

RESUMO

In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.


Assuntos
Carbonatos , Ferro , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Ferro/química , Poluentes Químicos da Água/química , Carbonatos/química , Catálise , Corantes/química , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio/química
8.
Int J Biol Macromol ; 274(Pt 1): 132767, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821296

RESUMO

This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.

9.
RSC Adv ; 14(18): 12533-12555, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38689800

RESUMO

This study investigates the corrosion inhibition potential of 3,4-dimethoxy phenyl thiosemicarbazone (DMPTS) for copper in 1 M hydrochloric acid (HCl) solutions, aiming to disclose the mechanism behind its protective action. Through an integrative methodology encompassing electrochemical analyses-such as weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS)-we quantitatively evaluate the corrosion protection efficacy of DMPTS. It was determined that the optimal concentration of DMPTS markedly boosts the corrosion resistance of copper, achieving an impressive inhibition efficiency of up to 89% at 400 ppm. The formation of a protective layer on the copper surface, a critical aspect of DMPTS's inhibitory action, was characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). These techniques provided empirical evidence of surface morphology modifications and roughness changes, affirming the formation of a protective barrier against corrosion. A significant advancement in our study was the application of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, which identified chemical adsorption as the definitive mechanism of corrosion inhibition by DMPTS. The ATR-FTIR results explicitly demonstrated the specific interactions between DMPTS molecules and the copper surface, indicative of a robust protective adsorbed layer formation. This mechanistic insight, crucial to understanding the inhibitory process, aligns with the protective efficacy observed in electrochemical and surface analyses. Theoretical support, provided by the Quantum Theory of Atoms in Molecules (QTAIM) and quantum chemical computations, further validated the strong molecular interaction between DMPTS and copper, corroborating the experimental findings. Collectively, this research not only confirms the superior corrosion inhibition performance of DMPTS in an acidic setting but also elucidates the chemical adsorption mechanism as the foundation of its action, offering valuable insights for the development of effective corrosion inhibitors in industrial applications.

10.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731626

RESUMO

The current study comprehensively investigates the adsorption behavior of chromium (Cr(III)) in wastewater using Algerian kaolinite clay. The structural and textural properties of the kaolinite clay are extensively characterized through a range of analytical methods, including XRD, FTIR, SEM-EDS, XPS, laser granulometry, N2 adsorption isotherm, and TGA-DTA. The point of zero charge and zeta potential are also assessed. Chromium adsorption reached equilibrium within five minutes, achieving a maximum removal rate of 99% at pH 5. Adsorption equilibrium is modeled using the Langmuir, Freundlich, Temkin, Elovich, and Dubinin-Radushkevitch equations, with the Langmuir isotherm accurately describing the adsorption process and yielding a maximum adsorption capacity of 8.422 mg/g for Cr(III). Thermodynamic parameters suggest the spontaneous and endothermic nature of Cr(III) sorption, with an activation energy of 26.665 kJ/mol, indicating the importance of diffusion in the sorption process. Furthermore, advanced DFT computations, including COSMO-RS, molecular orbitals, IGM, RDG, and QTAIM analyses, are conducted to elucidate the nature of adsorption, revealing strong binding interactions between Cr(III) ions and the kaolinite surface. The integration of theoretical and experimental data not only enhances the understanding of Cr(III) removal using kaolinite but also demonstrates the effectiveness of this clay adsorbent for wastewater treatment. Furthermore, this study highlights the synergistic application of empirical research and computational modeling in elucidating complex adsorption processes.

11.
Int J Biol Macromol ; 268(Pt 2): 131832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663704

RESUMO

In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), ß-cyclodextrin (ß-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Hidrogéis , Mimosa , Sementes , beta-Ciclodextrinas , Concentração de Íons de Hidrogênio , Animais , Coelhos , Hidrogéis/química , Mimosa/química , Sementes/química , beta-Ciclodextrinas/química , Masculino , Sistemas de Liberação de Medicamentos , Mucilagem Vegetal/química , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química
12.
ACS Omega ; 9(9): 10498-10516, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463273

RESUMO

The purpose of the current research is to formulate a smart drug delivery system for solubility enhancement and sustained release of hydrophobic drugs. Drug solubility-related challenges constitute a significant concern for formulation scientists. To address this issue, a recent study focused on developing PEG-g-poly(MAA) copolymeric nanogels to enhance the solubility of olmesartan, a poorly soluble drug. The researchers employed a free radical polymerization technique to formulate these nanogels. Nine formulations were formulated. The newly formulated nanogels underwent comprehensive tests, including physicochemical assessments, dissolution studies, solubility evaluations, toxicity investigations, and stability examinations. Fourier transform infrared (FTIR) investigations confirmed the successful encapsulation of olmesartan within the nanogels, while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies verified their thermal stability. Scanning electron microscopy (SEM) images revealed the presence of pores on the surface of the nanogels, facilitating water penetration and promoting rapid drug release. Moreover, powder X-ray diffraction (PXRD) studies indicated that the prepared nanogels exhibited an amorphous structure. The nanogel carrier system led to a significant enhancement in olmesartan's solubility, achieving a remarkable 12.3-fold increase at pH 1.2 and 13.29-fold rise in phosphate buffer of pH 6.8 (NGP3). Significant swelling was observed at pH 6.8 compared to pH 1.2. Moreover, the formulated nexus is nontoxic and biocompatible and depicts considerable potential for delivery of drugs and protein as well as heat-sensitive active moieties.

13.
ACS Omega ; 9(8): 9076-9089, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434904

RESUMO

A theoretical investigation was conducted using DFT/PW91/TZP/DMSO calculations on a complete set of exhaustive lists of 18 compounds resulting from the complexation of trans-2,4,3',5'-tetrahydroxystilbene (T-OXY) and cis-2,4,1',3'-tetrahydroxystilbene (C-OXY) with copper metal cations (Cu+ and Cu2+). The ligand-binding sites are the critical points of Quantum Theory of Atoms in Molecules (QTAIM) analysis on neutral and deprotonated ligands. Various mechanisms, including hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), single electron transfer followed by proton transfer (SET-PT), and bond dissociation energy (BDE(E0)) calculations, were employed to quantify the antioxidant activity. The BDE(E0) mechanism emerged as the most suitable approach for such analyses to evaluate the departure of hydrogen atoms since the results show the HAT mechanism is the most likely occurring. Particularly intriguing were the anionic Cu+ complexes with ligands adopting trans configurations and deprotonated conformations, displaying superior antioxidant activity compared to their counterparts. Remarkably, a single ligand within the Cu+ complex exhibited exceptional antioxidant prowess, yielding a BDE(E0) value of 91.47 kcal/mol. Furthermore, a complex involving two deprotonated ligands demonstrated antioxidant activity of 31.12 kcal/mol, signifying its potential as a potent antiradical agent, surpassing T-OXY by a factor of 3.91 and even surpassing the antioxidant efficiency of Vitamin C.

14.
J Diabetes Sci Technol ; : 19322968241236211, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506487

RESUMO

BACKGROUND: Glucose is vital for biological processes, requiring blood sugar levels to be maintained between 3.88 and 6.1 mmol/L, especially during fasting. Elevated levels signal diabetes, a global concern affecting 537 million people, necessitating effective glucose-monitoring devices. METHOD: Enzyme-based sensors, though selective, are sensitive to environmental factors. Nonenzymatic sensors, especially those with nanoparticles, offer stability, high surface area, and cost-effectiveness. Existing literature supports their immediate glucose oxidation, showcasing exceptional sensitivity. RESULTS: This review details nonenzymatic sensors, highlighting materials, detection limits, and the promise of nanoparticle-based designs, which exhibit enhanced sensitivity and selectivity in glucose detection. CONCLUSION: Nanoparticle-based sensors, as reviewed, show potential for glucose monitoring, overcoming enzyme-based limitations. The conclusion suggests future directions for advancing these sensors, emphasizing ongoing innovation in this critical research area.

15.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 67-79, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372111

RESUMO

Bacillus sp. RTS11, a xylanolytic strain, was isolated from the Algerian desert rocks. Genetic analysis revealed a remarkable 98.69% similarity to Bacillus pumilus. We harnessed optimization techniques, including Plackett-Burman screening and Box-Behnken optimization design, to amplify xylanase production and activity. The outcome of these efforts was an optimized medium that yielded an impressive xylanase production titer of 448.89 U, a threefold increase compared to the non-optimized medium (146 U). The Purification of xylanase was achieved through the three-phase partitioning technique, employing t-butanol and various chromatographic methods. Notably, anion exchange chromatography led to isolating a highly pure enzyme with a molecular weight of 60 kDa. The xylanase exhibited its peak activity at a temperature of 60°C and a pH of 9.0. When applied to pulp pretreatment, 20 U/g of xylanase demonstrated a substantial increase in the release of phenolic and chromophore compounds while reducing sugar content in the pulp. Furthermore, this versatile xylanase shows its ability to efficiently hydrolyze a variety of agro-industrial residues, including wheat bran, corn and grape waste, wheat straw, and sugarcane bagasse. These findings underscore the significant potential of this xylanase enzyme in biobleaching processes and the utilization of agro-industrial waste, opening up exciting avenues for sustainable and environmentally friendly industrial applications.


Assuntos
Bacillus , Saccharum , Bacillus/genética , Celulose , Endo-1,4-beta-Xilanases , Fibras na Dieta , Concentração de Íons de Hidrogênio
16.
ACS Omega ; 9(2): 2422-2431, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250400

RESUMO

This research describes the fabrication of the porous trimethylamine (TMA)-grafted anion exchange membrane (AEM) over a phase inversion process. The synthesis of the generated AEM was verified using Fourier transform infrared (FTIR) spectroscopy. The fabricated porous AEM showed 240% water uptake (WR), 1.45 mg/g ion exchange capacity (IEC), and a 9.0% linear expansion ratio (LER) at 25 °C. It exhibited a porous structure and higher thermal stability. It was utilized to remove eosin B (EB) from wastewater via the process of adsorption. The adsorption capacity of EB increased with time and the starting concentration of EB while decreasing with temperature and the AEM dosage. Adsorption isotherm investigation results showed that EB adsorption onto the porous AEM followed the Langmuir isotherm because the value of correlation coefficient (R2 = 0.992) was close to unity. Because the correlation coefficient was close to one, it was determined through adsorption kinetic experiments that the adsorption of EB on the produced porous AEM was suitable for a pseudo-second-order model. Thermodynamic study about process of EB adsorption on the porous AEM revealed that there was an exothermic (ΔH° = -16.60 kJ/mol) and spontaneous process.

17.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256105

RESUMO

This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.


Assuntos
Olea , Cobre , Águas Residuárias , Adsorção , Alginatos
18.
J Biomol Struct Dyn ; 42(3): 1404-1416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37066614

RESUMO

The misuse and overuse of antibiotics have resulted in antibiotic resistance. However, there are alternative approaches that could either substitute antibiotics or enhance their effectiveness without harmful side effects. One such approach is the use of terpene-rich essential oils. In this study, we aimed to demonstrate the antibacterial activity of the main components of three plant essential oils, namely Anthemis punctata, Anthemis pedunculata and Daucus crinitus. Specifically, we targeted bacterial tyrosyl-tRNA synthetase, an enzyme that plays a critical role in bacterial protein synthesis. To investigate how the phytocompounds interact with the enzyme's active sites, we employed a molecular docking study using Autodock Software Tools 1.5.7. Our findings revealed that all 28 phytocompounds bound to the enzyme's active sites with binding energies ranging from -6.96 to -4.03 kcal/mol. These results suggest that terpene-rich essential oils could be a potential source of novel antimicrobial agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Óleos Voláteis , Tirosina-tRNA Ligase , Tirosina-tRNA Ligase/metabolismo , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Terpenos/farmacologia
19.
Environ Res ; 241: 117544, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944689

RESUMO

This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.


Assuntos
Bentonita , Poluentes Químicos da Água , Bentonita/química , Azul de Metileno , Águas Residuárias , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Água
20.
Biomed Chromatogr ; 38(1): e5758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37795814

RESUMO

This study aimed to develop a fast, accurate, and precise high-performance liquid chromatography with UV detection method for simultaneous analysis of underivatized phenylalanine (Phe) and tyrosine (Tyr) in biological samples. Separation of the analytes was accomplished using a Discovery HS F5-3 column, which offered better retention and peak symmetry for the tested analytes. Chromatographic conditions were optimized using central composite experimental design, and three factors were investigated: the concentration of ammonium acetate (A), the acetonitrile proportion in the mobile phase (B) and the column oven temperature (C). The approach was verified using ß-expectation tolerance intervals for total error measurement that did not exceed 15%. Optimal settings were A = 50 mm, B = 24% and C = 28°C. The method applicability was determined using human plasma from 75 volunteers. The limits of detection and quantification of the technique were satisfactory at 9 and 29 µm for Phe and 4 and 13 µm for Tyr. The mean analytical bias in spiking levels was acceptable, ranging from -1.649 to +1.659% for both substances, with RSD <5% in all instances. The suggested approach was successfully used to analyze Phe and Tyr in human blood samples and calculate the Phe/Tyr ratio.


Assuntos
Fenilcetonúrias , Tirosina , Humanos , Fenilalanina , Cromatografia Líquida de Alta Pressão/métodos , Fenilcetonúrias/diagnóstico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...