Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Syst Neurosci ; 8: 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574980

RESUMO

The EntoPeduncular nucleus (EP), which is homologous to the internal segment of the Globus Pallidus (GPi) in primates, is one of the two basal ganglia (BG) output nuclei. Despite their importance in cortico-BG information processing, EP neurons have rarely been investigated in rats and there is no available electrophysiological characterization of EP neurons in vivo. We recorded and analyzed the activity of EP neurons in freely moving as well as anesthetized rats, and compared their activity patterns. Examination of neuronal firing statistics during wakefulness suggested that similar to neurons recorded in the primate GPi, EP neurons are a single population characterized by Poisson-like firing. Under isoflurane anesthesia the firing rate of EP neurons decreased substantially and their coefficient of variation and relative duration of quiescence periods increased. Investigation of the relationship between firing rate and depth of anesthesia revealed two distinct neuronal groups: one that decreased its firing rate with the increase in anesthesia level, and a second group where the firing rate was independent of anesthesia level. Post-hoc examination of the firing properties of the two groups showed that they were statistically distinct. These results may thus help reconcile in vitro studies in rats and primates which have reported two distinct neuronal populations, and in vivo studies in behaving primates indicating one homogeneous population. Our data support the existence of two distinct neuronal populations in the rat EP that can be distinguished by their characteristic firing response to anesthesia.

2.
J Neurosci ; 34(6): 2299-304, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501368

RESUMO

Tonically active neurons (TANs)--presumably, striatal cholinergic interneurons--exert a strong influence on striatal information processing. Primate studies often describe a characteristic TAN response comprising suppressed activity followed by rebound firing that occasionally is preceded by a brief activation. By contrast, studies in behaving rats report pronounced excitation during movement. These differences in firing patterns may be due to variations in behavioral conditions or could stem from the fact that TANs in rodents use different neuronal mechanisms. If similar/different task conditions yield similar/different activity patterns, then the two species may share neuronal mechanisms; however, if similar task conditions yield different activity patterns, then the two species use different neuronal mechanisms. To evaluate these possibilities, we recorded TAN activity in the ventral and dorsolateral striatal regions in rats performing a simple instrumental task similar in concept to one used in primate studies. We demonstrate that TAN activity is substantially influenced by event context; yet, under identical task conditions, primate and rat TANs display similar activity patterns, whereas under different conditions they do not. Our results suggest that the observed differences in firing patterns likely reflect dissimilarities in task attributes rather than species-dependent neuronal mechanisms and call for re-evaluation of the excitatory response in primate research.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Animais , Eletrodos Implantados , Masculino , Ratos , Ratos Long-Evans , Especificidade da Espécie
3.
PLoS One ; 7(9): e45421, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028997

RESUMO

Globus Pallidus external segment (GPe) neurons are well-characterized in behaving primates. Based on their firing properties, these neurons are commonly divided into two distinct groups: high frequency pausers (HFP) and low frequency bursters (LFB). However, no such characterization has been made for behaving rats. The current study characterizes and categorizes extracellularly recorded GPe neurons in freely moving rats, and compares these results to those obtained by extracellular recordings in behaving primates using the same analysis methods. Analysis of our data recorded in rats revealed two distinct neuronal populations exhibiting firing-pattern characteristics that are similar to those obtained in primates. These characteristic firing patterns are conserved between species although the firing rate is significantly lower in rats than in primates. Significant differences in waveform duration and shape were insufficient to create a reliable waveform-based classification in either species. The firing pattern analogy may emphasize conserved processing properties over firing rate per-se. Given the similarity in GPe neuronal activity between human and non-human primates in different pathologies, our results encourage information transfer using complementary studies across species in the GPe to acquire a better understanding of the function of this nucleus in health and disease.


Assuntos
Globo Pálido/fisiologia , Neurônios/fisiologia , Animais , Eletrofisiologia , Haplorrinos , Masculino , Primatas , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...