Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(3): 396-403, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723266

RESUMO

Transition metal dichalcogenides (TMDs) are promising for new generation nanophotonics due to their unique optical properties. However, in contrast to direct bandgap TMD monolayers, bulk samples have an indirect bandgap that restricts their application as light emitters. On the other hand, the high refractive index of these materials allows for effective light trapping and the creation of high-Q resonators. In this work, a method for the nanofabrication of microcavities from indirect TMD multilayer flakes, which makes it possible to achieve pronounced resonant photoluminescence enhancement due to the cavity modes, is proposed. Whispering gallery mode (WGM) resonators are fabricated from bulk indirect MoSe2 using resistless scanning probe lithography. A micro-photoluminescence (µ-PL) investigation revealed the WGM spectra of the resonators with an enhancement factor up to 100. The characteristic features of WGMs are clearly seen from the scattering experiments which are in agreement with the results of numerical simulations. It is shown that the PL spectra in the fabricated microcavities are contributed by two mechanisms demonstrating different temperature dependences. The indirect PL, which is quenched with the temperature decrease, and the direct PL which almost does not depend on the temperature. The results of the work show that the suggested approach has great prospects in nanophotonics.

2.
Nano Lett ; 22(22): 9092-9099, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342753

RESUMO

Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation. Namely, we demonstrate a record-high value of the nonlinear optical response in the nanostructured organic-inorganic halide perovskite MAPbI3, experimentally detected as a 19.7 meV blueshift of the polariton branch under femtosecond laser irradiation. This is substantially higher than characteristic values for the samples based on conventional semiconductors and monolayers of transition-metal dichalcogenides. The observed strong polaron-enhanced nonlinearity exists for both tetragonal and orthorhombic phases of MAPbI3 and remains stable at elevated temperatures.

3.
Nat Commun ; 12(1): 4425, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285222

RESUMO

The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2 phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2 and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.

4.
Nanotechnology ; 32(15): 155304, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33395678

RESUMO

Scanning probe microscopy is widely known not only as a well-established research method but also as a set of techniques enabling precise surface modification. One such technique is local anodic oxidation (LAO). In this study, we investigate the LAO of MoSe2 transferred on an Au/Si substrate, focusing specifically on the dependence of the height and diameter of oxidized dots on the applied voltage and time of exposure at various humidities. Depending on the humidity, two different oxidation regimes were identified. The first, at a relative humidity (RH) of 60%-65%, leads to in-plane isotropic oxidation. For this regime, we analyze the dependence of the size of oxidized dots on the oxidation parameters and modify the classical equation of oxidation kinetics to account for the properties of MoSe2 and its oxide. In this regime, patterns with a maximum spatial resolution of 10 nm were formed on the MoSe2 surface. The second is the in-plane anisotropic oxidation regime that arises at a RH of 40%-50%. In this regime, oxidation leads to the formation of triangles oxidized inside the zigzag edges. Based on the mutual orientation of zigzag and armchair directions in successive oxidized layers, the stacking type and phase of MoSe2 flakes were determined. These results allow LAO to be considered not only as an ultra-high-resolution nanolithography method, but also as a method for investigating the crystal structure of materials with strong intrinsic anisotropy, such as transition metal dichalcogenides.

5.
Light Sci Appl ; 9: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284858

RESUMO

Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe2 to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent Q-factor, this provides for the enhancement and control of polariton-polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...