Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 24(5): 1285-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23386209

RESUMO

It is well established that surface topography greatly affect cell-surface interactions. In a recent study we showed that microstructured stainless steel surfaces characterized by the presence of defined hexagonally arranged hemisphere-like structures significantly affected cell architecture (shape and focal adhesion size) of primary human bone mesenchymal stromal cells. This study aimed at further investigating the influence these microstructures (microcline protruding hemispheres) on critical aspects of cell behaviour namely; proliferation, migration and osteogenic differentiation. As with previously reported data, we used primary human bone mesenchymal stromal cells to investigate such effects at an early stage in vitro. Cells of different patients were utilised for cell migration studies. Our data showed that an increase in cell proliferation was exhibited as a function of surface topography (hemispheres). Cell migration velocity also varied as a function of surface topography on patient specific basis and seems to relate to the differentiated state of the seeded cell population (as demonstrated by bALP positivity). Osteogenic differentiation, however, did not exhibit significant variations (both up and down-regulation) as a function of both surface topography and time in culture.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Aço Inoxidável/química , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Tamanho da Partícula , Propriedades de Superfície/efeitos dos fármacos
2.
ChemMedChem ; 2(8): 1100-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17530727

RESUMO

This review describes simple and useful concepts for predicting and tuning the pK(a) values of basic amine centers, a crucial step in the optimization of physical and ADME properties of many lead structures in drug-discovery research. The article starts with a case study of tricyclic thrombin inhibitors featuring a tertiary amine center with pK(a) values that can be tuned over a wide range, from the usual value of around 10 to below 2 by (remote) neighboring functionalities commonly encountered in medicinal chemistry. Next, the changes in pK(a) of acyclic and cyclic amines upon substitution by fluorine, oxygen, nitrogen, and sulfur functionalities, as well as carbonyl and carboxyl derivatives are systematically analyzed, leading to the derivation of simple rules for pK(a) prediction. Electronic and stereoelectronic effects in cyclic amines are discussed, and the emerging computational methods for pK(a) predictions are briefly surveyed. The rules for tuning amine basicities should not only be of interest in drug-discovery research, but also to the development of new crop-protection agents, new amine ligands for organometallic complexes, and in particular, to the growing field of amine-based organocatalysis.


Assuntos
Aminas/química , Química Farmacêutica , Antitrombinas/química , Desenho de Fármacos , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...