Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249073

RESUMO

The Varroa destructor mite infests Apis mellifera colonies and causes significant harm. Traditional treatments have become less effective because of mite resistance development and can also generate residues inside beehives. This study aimed to gauge the efficacy of a beehive-derived postbiotic in reducing V. destructor viability and to explore its synergies with organic compounds. Four lactic acid bacteria (LAB) species, Leuconostoc mesenteroides, Lactobacillus helsingborgensis, Bacillus velezensis, and Apilactobacillus kunkeei, were isolated and tested in a postbiotic form (preparations of inanimate microorganisms and/or their components) via bioassays. L. mesenteroides, L. helsingborgensis, and B. velezensis notably reduced the mite viability compared to the control, and they were further tested together as a single postbiotic product (POS). Further bioassays were performed to assess the impact of the POS and its combinations with oxalic acid and oregano essential oil. The simple products and combinations (POS/Oregano, POS/Oxalic, Oregano/Oxalic, and POS/Oregano/Oxalic) decreased the mite viability. The most effective were the oxalic acid combinations (POS/Oregano/Oxalic, Oxalic/Oregano, POS/Oxalic), showing significant improvements compared to the individual products. These findings highlight the potential of combining organic products as a vital strategy for controlling V. destructor infection. This study suggests that these combinations could serve as essential tools for combating the impact of mites on bee colonies.

2.
Environ Toxicol Pharmacol ; 105: 104330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042261

RESUMO

Evidence suggests that acaricide residues, such as tau-fluvalinate and coumaphos, are very prevalent in honey bee colonies worldwide. However, the endpoints and effects of chronic oral exposure to these compounds remain poorly understood. In this study, we calculated LC50 and LDD50 endpoints for coumaphos and tau-fluvalinate, and then evaluated in vivo and in vitro effects on honey bees using different biomarkers. The LDD50 values for coumaphos were 0.539, and for tau-fluvalinate, they were 12.742 in the spring trial and 8.844 in the autumn trial. Chronic exposure to tau-fluvalinate and coumaphos resulted in significant changes in key biomarkers, indicating potential neurotoxicity, xenobiotic biotransformation, and oxidative stress. The Integrated Biomarker Response was stronger for coumaphos than for tau-fluvalinate, supporting their relative lethality. This study highlights the chronic toxicity of these acaricides and presents the first LDD50 values for tau-fluvalinate and coumaphos in honey bees, providing insights into the risks faced by colonies.


Assuntos
Acaricidas , Piretrinas , Abelhas , Animais , Cumafos/toxicidade , Acaricidas/toxicidade , Piretrinas/toxicidade , Nitrilas/toxicidade
3.
Environ Toxicol Pharmacol ; 94: 103920, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772611

RESUMO

There is mounting evidence that acaricides are among the most prevalent medicinal compounds in honey bee hive matrices worldwide. According to OCDE guideline No. 245 chronic lethal concentration of tau-fluvalinate (at concentrations ranging from 77.5 to 523.18 ppm), coumaphos (59.8 ppm) and dimethoate (0.7 ppm) were determined. The activity of the biomarkers acetylcholinesterase (AChE), carboxylesterase (CbE), glutathione S-transferase (GST), catalase (CAT) and malondialdehyde (MDA) was analysed and as they are implicated in neurotoxicity, biotransformation and antioxidant defences, these values were combined into an integrated biomarker response (IBR). There was enhanced AChE, CAT and GST activity in honey bees exposed to tau-fluvalinate, while dimethoate inhibited AChE activity. Both dimethoate and coumaphos inhibited CbE activity but they enhanced CAT activity and MDA formation. Our results highlight how these biomarkers may serve to reveal honey bee exposure to commonly used acaricides.


Assuntos
Acaricidas , Piretrinas , Acaricidas/toxicidade , Acetilcolinesterase , Animais , Biomarcadores , Cumafos/toxicidade , Dimetoato/toxicidade , Piretrinas/toxicidade
4.
Insects ; 12(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442297

RESUMO

Varroa destructor is considered one of the most devastating parasites of the honey bee, Apis mellifera, and a major problem for the beekeeping industry. Currently, the main method to control Varroa mites is the application of drugs that contain different acaricides as active ingredients. The pyrethroid tau-fluvalinate is one of the acaricides most widely used in beekeeping due to its efficacy and low toxicity to bees. However, the intensive and repetitive application of this compound produces a selective pressure that, when maintained over time, contributes to the emergence of resistant mites in the honey bee colonies, compromising the acaricidal treatments efficacy. Here we studied the presence of tau-fluvalinate residues in hives and the evolution of genetic resistance to this acaricide in Varroa mites from honey bee colonies that received no pyrethroid treatment in the previous four years. Our data revealed the widespread and persistent tau-fluvalinate contamination of beeswax and beebread in hives, an overall increase of the pyrethroid resistance allele frequency and a generalized excess of resistant mites relative to Hardy-Weinberg equilibrium expectations. These results suggest that tau-fluvalinate contamination in the hives may seriously compromise the efficacy of pyrethroid-based mite control methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...