Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(9): 4128-4142, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489636

RESUMO

The likelihood that fish will initiate spawning, spawn successfully, or skip spawning in a given year is conditioned in part on availability of energy reserves. We evaluated the consequences of spatial heterogeneity in thermal conditions on the energy accumulation and spawning potential of migratory bull trout (Salvelinus confluentus) in a regulated river-reservoir system. Based on existing data, we identified a portfolio of thermal exposures and migratory patterns and then estimated their influence on energy reserves of female bull trout with a bioenergetics model. Spawning by females was assumed to be possible if postspawning energy reserves equaled or exceeded 4 kJ/g. Given this assumption, results suggested up to 70% of the simulated fish could spawn each year. Fish that moved seasonally between a cold river segment and a warmer reservoir downstream had a greater growth rate and higher propensity to spawn in a given year (range: 40%-70%) compared with fish that resided solely in the cold river segment (25%-40%). On average, fish that spawned lost 30% of their energy content relative to their prespawn energy. In contrast, fish that skipped spawning accumulated, on average, 16% energy gains that could be used toward future gamete production. Skipped spawning occurred when water temperatures were relatively low or high, and if upstream migration occurred relatively late (mid-July or later) or early (early-May or earlier). Overall, our modeling effort suggests the configuration of thermal exposures, and the ability of bull trout to exploit this spatially and temporally variable thermal conditions can strongly influence energy reserves and likelihood of successful spawning.

2.
Ecology ; 101(8): e03064, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32274791

RESUMO

Networks of direct and indirect biotic interactions underpin the complex dynamics and stability of ecological systems, yet experimental and theoretical studies often yield conflicting evidence regarding the direction (positive or negative) or magnitude of these interactions. We revisited pioneering data sets collected at the deciduous forested Horonai Stream and conducted ecosystem-level syntheses to demonstrate that the direction of direct and indirect interactions can change depending on the timescale of observation. Prior experimental studies showed that terrestrial prey that enter the stream from the adjacent forest caused positive indirect effects on aquatic invertebrates during summer by diverting fish consumption. Seasonal and annual estimates of secondary production and organic matter flows along food web pathways demonstrate that this seasonal input of terrestrial invertebrate prey increases production of certain fish species, reversing the indirect effect on aquatic invertebrates from positive at the seasonal timescale to negative at the annual timescale. Even though terrestrial invertebrate prey contributed 54% of the annual organic matter flux to fishes, primarily during summer, fish still consumed 98% of the aquatic invertebrate annual production, leading to top-down control that is not revealed in short-term experiments and demonstrating that aquatic prey may be a limiting resource for fishes. Changes in the direction or magnitude of interactions may be a key factor creating nonlinear or stabilizing feedbacks in complex systems, and these dynamics can be revealed by merging experimental and comparative approaches at different scales.


Assuntos
Ecossistema , Rios , Animais , Cadeia Alimentar , Florestas , Invertebrados
3.
Ecol Appl ; 27(3): 814-832, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28078716

RESUMO

Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning, we constructed a model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of the model to the Methow River, Washington, USA, a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and side channel reconnection. We also added populations of nonnative aquatic snails and fish to the modeled food web to explore how changes in food web structure mediate responses to restoration. Simulations suggest that side channel reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of nonnative snails and fish modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure, as might be expected with the spread of invasive species, could compromise restoration outcomes. Unlike habitat-based approaches to restoration assessment that focus on the direct effects of physical habitat conditions on single species of interest, our approach dynamically links the success of target organisms to the success of competitors, predators, and prey. By elucidating the direct and indirect pathways by which restoration affects target species, dynamic food web models can improve restoration planning by fostering a deeper understanding of system connectedness and dynamics.


Assuntos
Conservação dos Recursos Naturais , Cadeia Alimentar , Rios , Animais , Conservação dos Recursos Hídricos , Peixes , Espécies Introduzidas , Modelos Biológicos , Caramujos , Washington
4.
Oecologia ; 167(2): 503-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21688160

RESUMO

Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout.


Assuntos
Cadeia Alimentar , Insetos/fisiologia , Espécies Introduzidas , Aranhas/fisiologia , Truta/fisiologia , Animais , Biomassa , Colorado , Comportamento Competitivo , Ecossistema , Idaho , Modelos Biológicos , Dinâmica Populacional , Rios , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...