Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 130602, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613262

RESUMO

Quantum computing requires a universal set of gate operations; regarding gates as rotations, any rotation angle must be possible. However a real device may only be capable of B bits of resolution, i.e., it might support only 2^{B} possible variants of a given physical gate. Naive discretization of an algorithm's gates to the nearest available options causes coherent errors, while decomposing an impermissible gate into several allowed operations increases circuit depth. Conversely, demanding higher B can greatly complexify hardware. Here, we explore an alternative: probabilistic angle interpolation (PAI). This effectively implements any desired, continuously parametrized rotation by randomly choosing one of three discretized gate settings and postprocessing individual circuit outputs. The approach is particularly relevant for near-term applications where one would in any case average over many runs of circuit executions to estimate expected values. While PAI increases that sampling cost, we prove that (a) the approach is optimal in the sense that PAI achieves the least possible overhead and (b) the overhead is remarkably modest even with thousands of parametrized gates and only seven bits of resolution available. This is a profound relaxation of engineering requirements for first generation quantum computers where even 5-6 bits of resolution may suffice and, as we demonstrate, the approach is many orders of magnitude more efficient than prior techniques. Moreover we conclude that, even for more mature late noisy intermediate-scale quantum era hardware, no more than nine bits will be necessary.

2.
Sci Adv ; 9(9): eabo7484, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36857445

RESUMO

First-quantized, grid-based methods for chemistry modeling are a natural and elegant fit for quantum computers. However, it is infeasible to use today's quantum prototypes to explore the power of this approach because it requires a substantial number of near-perfect qubits. Here, we use exactly emulated quantum computers with up to 36 qubits to execute deep yet resource-frugal algorithms that model 2D and 3D atoms with single and paired particles. A range of tasks is explored, from ground state preparation and energy estimation to the dynamics of scattering and ionization; we evaluate various methods within the split-operator QFT (SO-QFT) Hamiltonian simulation paradigm, including protocols previously described in theoretical papers and our own techniques. While we identify certain restrictions and caveats, generally, the grid-based method is found to perform very well; our results are consistent with the view that first-quantized paradigms will be dominant from the early fault-tolerant quantum computing era onward.

3.
Natl Sci Rev ; 9(1): nwab011, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070323

RESUMO

Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error-correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state and state decoding. To address this challenge, we experimentally realise the [5, 1, 3] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the [5, 1, 3] code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of [Formula: see text] while with a high fidelity of [Formula: see text] in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilisers. We further implement logical Pauli operations with a fidelity of [Formula: see text] within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of [Formula: see text], in total with 92 gates. Our work demonstrates each key aspect of the [5, 1, 3] code and verifies the viability of experimental realisation of quantum error-correcting codes with superconducting qubits.

4.
Sci Bull (Beijing) ; 66(21): 2181-2188, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654109

RESUMO

Quantum algorithms have been developed for efficiently solving linear algebra tasks. However, they generally require deep circuits and hence universal fault-tolerant quantum computers. In this work, we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices. We show that the solutions of linear systems of equations and matrix-vector multiplications can be translated as the ground states of the constructed Hamiltonians. Based on the variational quantum algorithms, we introduce Hamiltonian morphing together with an adaptive ansätz for efficiently finding the ground state, and show the solution verification. Our algorithms are especially suitable for linear algebra problems with sparse matrices, and have wide applications in machine learning and optimisation problems. The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation. We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations. We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.

5.
Phys Rev Lett ; 125(18): 180501, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196221

RESUMO

Adiabatic quantum computing enables the preparation of many-body ground states. Realization poses major experimental challenges: Direct analog implementation requires complex Hamiltonian engineering, while the digitized version needs deep quantum gate circuits. To bypass these obstacles, we suggest an adiabatic variational hybrid algorithm, which employs short quantum circuits and provides a systematic quantum adiabatic optimization of the circuit parameters. The quantum adiabatic theorem promises not only the ground state but also that the excited eigenstates can be found. We report the first experimental demonstration that many-body eigenstates can be efficiently prepared by an adiabatic variational algorithm assisted with a multiqubit superconducting coprocessor. We track the real-time evolution of the ground and excited states of transverse-field Ising spins with a fidelity that can reach about 99%.

6.
Phys Rev Lett ; 125(1): 010501, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678631

RESUMO

Variational quantum algorithms have been proposed to solve static and dynamic problems of closed many-body quantum systems. Here we investigate variational quantum simulation of three general types of tasks-generalized time evolution with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum system dynamics. The algorithm for generalized time evolution provides a unified framework for variational quantum simulation. In particular, we show its application in solving linear systems of equations and matrix-vector multiplications by converting these algebraic problems into generalized time evolution. Meanwhile, assuming a tensor product structure of the matrices, we also propose another variational approach for these two tasks by combining variational real and imaginary time evolution. Finally, we introduce variational quantum simulation for open system dynamics. We variationally implement the stochastic Schrödinger equation, which consists of dissipative evolution and stochastic jump processes. We numerically test the algorithm with a 6-qubit 2D transverse field Ising model under dissipation.

7.
Sci Rep ; 9(1): 11281, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375710

RESUMO

Twirling is a technique widely used for converting arbitrary noise channels into Pauli channels in error threshold estimations of quantum error correction codes. It is vitally useful both in real experiments and in classical quantum simulations. Minimising the size of the twirling gate set increases the efficiency of simulations and in experiments it might reduce both the number of runs required and the circuit depth (and hence the error burden). Conventional twirling uses the full set of Pauli gates as the set of twirling gates. This article provides a theoretical background for Pauli twirling and a way to construct a twirling gate set with a number of members comparable to the size of the Pauli basis of the given error channel, which is usually much smaller than the full set of Pauli gates. We also show that twirling is equivalent to stabiliser measurements with discarded measurement results, which enables us to further reduce the size of the twirling gate set.

8.
Sci Rep ; 9(1): 10736, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341200

RESUMO

We introduce QuEST, the Quantum Exact Simulation Toolkit, and compare it to ProjectQ, qHipster and a recent distributed implementation of Quantum++. QuEST is the first open source, hybrid multithreaded and distributed, GPU accelerated simulator of universal quantum circuits. Embodied as a C library, it is designed so that a user's code can be deployed seamlessly to any platform from a laptop to a supercomputer. QuEST is capable of simulating generic quantum circuits of general one and two-qubit gates and multi-qubit controlled gates, on pure and mixed states, represented as state-vectors and density matrices, and under the presence of decoherence. Using the ARCUS and ARCHER supercomputers, we benchmark QuEST's simulation of random circuits of up to 38 qubits, distributed over up to 2048 compute nodes, each with up to 24 cores. We directly compare QuEST's performance to ProjectQ's on single machines, and discuss the differences in distribution strategies of QuEST, qHipster and Quantum++. QuEST shows excellent scaling, both strong and weak, on multicore and distributed architectures.

9.
Sci Adv ; 2(10): e1601246, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819050

RESUMO

In a recent paper, Lechner, Hauke, and Zoller (LHZ) described a means to translate a Hamiltonian of N spin-1/2 particles with "all-to-all" interactions into a larger physical lattice with only on-site energies and local parity constraints. LHZ used this mapping to propose a novel form of quantum annealing. We provide a stabilizer-based formulation within which we can describe both this prior approach and a wide variety of variants. Examples include a triangular array supporting all-to-all connectivity as well as arrangements requiring only 2N or N log N spins but providing interesting bespoke connectivities. Further examples show that arbitrarily high-order logical terms can be efficiently realized, even in a strictly two-dimensional layout. Our stabilizers can correspond to either even-parity constraints, as in the LHZ proposal, or odd-parity constraints. Considering the latter option applied to the original LHZ layout, we note that it may simplify the physical realization because the required ancillas are only spin-1/2 systems (that is, qubits rather than qutrits); moreover, the interactions are very simple. We make a preliminary assessment of the impact of these design choices by simulating small (few-qubit) systems; we find some indications that the new variant may maintain a larger minimum energy gap during the annealing process.

10.
Sci Rep ; 6: 33686, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646692

RESUMO

Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor.

12.
Nat Commun ; 4: 1756, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612297

RESUMO

A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.

13.
Phys Rev Lett ; 110(10): 100503, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521240

RESUMO

Coupled spin chains are promising candidates for wiring up qubits in solid-state quantum computing (QC). In particular, two nitrogen-vacancy centers in diamond can be connected by a chain of implanted nitrogen impurities; when driven by suitable global fields the chain can potentially enable quantum state transfer at room temperature. However, our detailed analysis of error effects suggests that foreseeable systems may fall far short of the fidelities required for QC. Fortunately the chain can function in the more modest role as a mediator of noisy entanglement, enabling QC provided that we use subsequent purification. For instance, a chain of 5 spins with interspin distances of 10 nm has finite entangling power as long as the T(2) time of the spins exceeds 0.55 ms. Moreover we show that repurposing the chain this way can remove the restriction to nearest-neighbor interactions, so eliminating the need for complicated dynamical decoupling sequences.

14.
Biophys J ; 102(5): 961-8, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404918

RESUMO

Certain migratory birds can sense the Earth's magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally see the local magnetic field through the impact of a physical rather than a chemical signature of the radical pair: a transient, long-lived electric dipole moment. Based on this premise, our picture can explain recent surprising experimental data indicating long lifetimes for the radical pair. Moreover, there is a clear evolutionary path toward this field-sensing mechanism: it is an enhancement of a weak effect that may be present in many species.


Assuntos
Campos Magnéticos , Modelos Biológicos , Migração Animal/fisiologia , Migração Animal/efeitos da radiação , Radicais Livres/metabolismo , Ondas de Rádio , Fatores de Tempo
15.
Nat Commun ; 3: 606, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22215081

RESUMO

The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.

16.
Phys Rev Lett ; 107(20): 207210, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181771

RESUMO

Recently there have been several theoretical and experimental studies of the prospects for magnetic field sensors based on crystal defects, especially nitrogen vacancy (NV) centers in diamond. Such systems could potentially be incorporated into an atomic force microscopy-like apparatus in order to map the magnetic properties of a surface at the single spin level. In this Letter we propose an augmented sensor consisting of an NV center for readout and an "amplifier" spin system that directly senses the local magnetic field. Our calculations show that this hybrid structure has the potential to detect magnetic moments with a sensitivity and spatial resolution far beyond that of a simple NV center, and indeed this may be the physical limit for sensors of this class.


Assuntos
Fenômenos Magnéticos , Nitrogênio/química , Prótons
17.
Phys Rev Lett ; 106(16): 167204, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599409

RESUMO

Electron and nuclear spins have been employed in many of the early demonstrations of quantum technology. However, applications in real world quantum technology are limited by the difficulty of measuring single spins. Here we show that it is possible to rapidly and robustly amplify a spin state using a lattice of ancillary spins. The model we employ corresponds to an extremely simple experimental system: a homogenous Ising-coupled spin lattice in one, two, or three dimensions, driven by a continuous microwave field. We establish that the process can operate at finite temperature (imperfect initial polarization) and under the effects of various forms of decoherence.

18.
Phys Rev Lett ; 106(4): 040503, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405313

RESUMO

In artificial systems, quantum superposition and entanglement typically decay rapidly unless cryogenic temperatures are used. Could life have evolved to exploit such delicate phenomena? Certain migratory birds have the ability to sense very subtle variations in Earth's magnetic field. Here we apply quantum information theory and the widely accepted "radical pair" model to analyze recent experimental observations of the avian compass. We find that superposition and entanglement are sustained in this living system for at least tens of microseconds, exceeding the durations achieved in the best comparable man-made molecular systems. This conclusion is starkly at variance with the view that life is too "warm and wet" for such quantum phenomena to endure.

19.
Phys Rev Lett ; 104(5): 050501, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366753

RESUMO

The creation of complex entangled states, resources that enable quantum computation, can be achieved via simple "probabilistic" operations which are individually likely to fail. However, typical proposals exploiting this idea carry a severe overhead in terms of the accumulation of errors. Here, we describe a method that can rapidly generate large entangled states with an error accumulation that depends only logarithmically on the failure probability. We find that the approach may be practical for success rates in the sub-10% range. The assumptions that we make, including parallelism and high connectivity, are appropriate for real systems including those based on measurement-induced entanglement. This result therefore indicates the feasibility of such devices.

20.
Phys Rev Lett ; 105(25): 250502, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231569

RESUMO

In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...