Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0265129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358221

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with Cystic Fibrosis (CF). Herein, we describe a longitudinal analysis of a series of multidrug resistant (MDR) P. aeruginosa isolates recovered in a 17-month period, from a young female CF patient who underwent double lung transplantation. Our goal was to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence evolution over time. METHODS: Twenty-two sequential P. aeruginosa isolates were obtained within a 17-month period, before and after a double-lung transplant. At the end of the study period, antimicrobial susceptibility testing, whole genome sequencing (WGS), phylogenetic analyses and RNAseq were performed in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time. RESULTS: The majority of isolates were resistant to almost all tested antibiotics. A phylogenetic reconstruction revealed 3 major clades representing a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggested that a group of closely related strains was present in the patient prior to transplantation and continued to change throughout the course of treatment. A trend toward accumulation of mutations over time was observed. Different mutations in the DNA mismatch repair gene mutL consistent with a hypermutator phenotype were observed in two clades. RNAseq performed on 12 representative isolates revealed substantial differences in the expression of genes associated with antibiotic resistance and virulence traits. CONCLUSIONS: The overwhelming current practice in the clinical laboratories setting relies on obtaining a pure culture and reporting the antibiogram from a few isolated colonies to inform therapy decisions. Our analyses revealed significant underlying genomic heterogeneity and unpredictable evolutionary patterns that were independent of prior antibiotic treatment, highlighting the need for comprehensive sampling and population-level analysis when gathering microbiological data in the context of CF P. aeruginosa chronic infection. Our findings challenge the applicability of antimicrobial stewardship programs based on single-isolate resistance profiles for the selection of antibiotic regimens in chronic infections such as CF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
2.
mSphere ; 7(1): e0002122, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107338

RESUMO

Some of the protist species which colonize the hindguts of wood-feeding Reticulitermes termites are associated with endosymbiotic bacteria belonging to the genus Endomicrobium. In this study, we focused on the endosymbionts of three protist species from Reticulitermes flavipes, as follows: Pyrsonympha vertens, Trichonympha agilis, and Dinenympha species II. Since these protist hosts represented members of different taxa which colonize separate niches within the hindguts of their termite hosts, we investigated if these differences translated to differential gene content and expression in their endosymbionts. Following assembly and comparative genome and transcriptome analyses, we discovered that these endosymbionts differed with respect to some possible niche-specific traits, such as carbon metabolism. Our analyses suggest that species-specific genes related to carbon metabolism were acquired by horizontal gene transfer (HGT) and may have come from taxa which are common in the termite hind gut. In addition, our analyses suggested that these endosymbionts contain and express genes related to natural transformation (competence) and recombination. Taken together, the presence of genes acquired by HGT and a putative competence pathway suggest that these endosymbionts are not cut off from gene flow and that competence may be a mechanism by which members of Endomicrobium can acquire new traits. IMPORTANCE The composition and structure of wood, which contains cellulose, hemicellulose, and lignin, prevent most organisms from using this common food source. Termites are a rare exception among animals, and they rely on a complex microbiota housed in their hindguts to use wood as a source of food. The lower termite, Reticulitermes flavipes, houses a variety of protists and prokaryotes that are the key players in the disassembly of lignocellulose. Here, we describe the genomes and the gene expression profiles of five Endomicrobium endosymbionts living inside three different protist species from R. flavipes. Data from these genomes suggest that these Endomicrobium species have different mechanisms for using carbon. In addition, they harbor genes that may be used to import DNA from their environment. This process of DNA uptake may contribute to the high levels of horizontal gene transfer noted previously in Endomicrobium species.


Assuntos
Isópteros , Animais , Bactérias , Carbono/metabolismo , Eucariotos/genética , Isópteros/microbiologia , Filogenia , Simbiose/genética , Transcriptoma
3.
mSphere ; 6(2)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827913

RESUMO

Current sequencing-based methods for profiling microbial communities rely on marker gene (e.g., 16S rRNA) or metagenome shotgun sequencing (mWGS) analysis. We present an approach based on a single-primer extension reaction using a highly multiplexed oligonucleotide probe pool. This approach, termed MA-GenTA (microbial abundances from genome tagged analysis), enables quantitative, straightforward, cost-effective microbiome profiling that combines desirable features of both 16S rRNA and mWGS strategies. The use of multiple probes per target genome and rigorous probe design criteria enabled robust determination of relative abundance. To test the utility of the MA-GenTA assay, probes were designed for 830 genome sequences representing bacteria present in mouse stool specimens. Comparison of the MA-GenTA data with mWGS data demonstrated excellent correlation down to 0.01% relative abundance and a similar number of organisms detected per sample. Despite the incompleteness of the reference database, nonmetric multidimensional scaling (NMDS) clustering based on the Bray-Curtis dissimilarity metric of sample groups was consistent between MA-GenTA, mWGS, and 16S rRNA data sets. MA-GenTA represents a potentially useful new method for microbiome community profiling based on reference genomes.IMPORTANCE New methods for profiling the microbial communities can create new approaches to understanding the composition and function of those communities. In this study, we combined bacterial genome-specific probe design with a highly multiplexed single primer extension reaction as a new method to profile microbial communities, using stool from various mouse strains as a test case. This method, termed MA-GenTA, was benchmarked against 16S rRNA gene sequencing and metagenome sequencing methods and delivered similar relative abundance and clustering data. Since the probes were generated from reference genomes, MA-GenTA was also able to provide functional pathway data for the stool microbiome in the assayed samples. The method is more informative than 16S rRNA analysis while being less costly than metagenome shotgun sequencing.


Assuntos
Bactérias/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Microbiota/genética , Animais , DNA Bacteriano/genética , Fezes/microbiologia , Perfilação da Expressão Gênica/economia , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Análise de Sequência de DNA
4.
Curr Protoc Toxicol ; 77(1): e53, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30044549

RESUMO

Microbiomes can be thought of as the integration of biotic and abiotic factors, including the microbial communities and the distinct physio-chemical properties that are present in a habitat. The microbes within a microbiome can influence the chemical environment by degrading medications inside patients or contaminants in the environment, such as hydrocarbons released after the Deepwater Horizon oil spill. Identifying and monitoring the relative abundance of microbes can help to elucidate variations in their response to toxins and should be considered as a variable in statistical analyses. In addition, the presence of pathogenic microbes or toxin-producing species could affect the observed toxicity of an environment. The protocols in this unit begin with the collection of samples, proceeds to sequencing of the bacterial DNA, and ends with an analysis of the bacterial community in light of environmental metadata. © 2018 by John Wiley & Sons, Inc.

5.
ISME J ; 12(10): 2559-2574, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29955140

RESUMO

Microbiomes impact a variety of processes including a host's ability to access nutrients and maintain health. While host species differences in microbiomes have been described across ecosystems, little is known about how microbiomes assemble, particularly in the ecological and social contexts in which they evolved. We examined gut microbiome composition in nine sympatric wild non-human primate (NHP) species. Despite sharing an environment and interspecific interactions, individuals harbored unique and persistent microbiomes influenced by host species, social group, and parentage, but surprisingly not by social relationships among members of a social group. We found a branching order of host-species networks constructed using the composition of their microbiomes as characters, which was incongruent with known NHP phylogenetic relationships, with chimpanzees (Pan troglodytes verus) sister to colobines, upon which they regularly prey. In contrast to phylogenetic clustering found in all monkey microbiomes, chimpanzee microbiomes were unique in that they exhibited patterns of phylogenetic overdispersion. This reflects unique ecological processes impacting microbiome composition in chimpanzees and future studies will elucidate the aspects of chimpanzee ecology, life history, and physiology that explain their unique microbiome community structure. Our study of contemporaneous microbiomes of all sympatric diurnal NHP in an ecosystem highlights the diverse dispersal routes shaping these complex communities.


Assuntos
Bactérias/genética , Haplorrinos/microbiologia , Microbiota , Animais , Bactérias/classificação , Côte d'Ivoire , Ecossistema , Especificidade de Hospedeiro , Filogenia , Comportamento Predatório
6.
Microbiome ; 6(1): 86, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747692

RESUMO

BACKGROUND: As the importance of beneficial bacteria is better recognized, understanding the dynamics of symbioses becomes increasingly crucial. In many gut symbioses, it is essential to understand whether changes in host diet play a role in the persistence of the bacterial gut community. In this study, termites were fed six dietary sources and the microbial community was monitored over a 49-day period using 16S rRNA gene sequencing. A deep backpropagation artificial neural network (ANN) was used to learn how the six different lignocellulose food sources affected the temporal composition of the hindgut microbiota of the termite as well as taxon-taxon and taxon-substrate interactions. RESULTS: Shifts in the termite gut microbiota after diet change in each colony were observed using 16S rRNA gene sequencing and beta diversity analyses. The artificial neural network accurately predicted the relative abundances of taxa at random points in the temporal study and showed that low-abundant taxa maintain community driving correlations in the hindgut. CONCLUSIONS: This combinatorial approach utilizing 16S rRNA gene sequencing and deep learning revealed that low-abundant bacteria that often do not belong to the core community are drivers of the termite hindgut bacterial community composition.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Isópteros/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Dieta , Lignina/metabolismo , Análise de Sequência de DNA , Simbiose/fisiologia
7.
Front Microbiol ; 7: 171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925043

RESUMO

The hindgut of the termite Reticulitermes flavipes harbors a complex symbiotic community consisting of protists, bacteria, and archaea. These symbionts aid in the digestion of lignocellulose from the termite's wood meal. Termite hindguts were sampled and the V4 hyper-variable region of the 16S rRNA gene was sequenced and analyzed from individual termites. The core microbiota of worker termites consisted of 69 OTUs at the 97% identity level, grouped into 16 taxa, and together accounted for 67.05% of the sequences from the bacterial community. The core was dominated by Treponema, which contained 36 different OTUs and accounted for ∼32% of the sequences, which suggests Treponema sp. have an important impact on the overall physiology in the hindgut. Bray-Curtis beta diversity metrics showed that hindgut samples from termites of the same colony were more similar to each other than to samples from other colonies despite possessing a core that accounted for the majority of the sequences. The specific tasks and dietary differences of the termite castes could have an effect on the composition of the microbial community. The hindgut microbiota of termites from the alate castes differed from the worker caste with significantly lower abundances of Treponema and Endomicrobia, which dominated the hindgut microbiota in workers and soldiers. Protist abundances were also quantified in the same samples using qPCR of the 18S rRNA gene. Parabasalia abundances dropped significantly in the winged alates and the Oxymonadida abundances dropped in both alate castes. These data suggest that the changes in diet or overall host physiology affected the protist and bacterial populations in the hindgut. The in-depth bacterial characterization and protist quantification in this study sheds light on the potential community dynamics within the R. flavipes hindgut and identified a large and complex core microbiota in termites obtained from multiple colonies and castes.

8.
PLoS One ; 9(4): e94249, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722003

RESUMO

The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity.


Assuntos
Bactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Animais , Artefatos , Bovinos , Análise por Conglomerados , Biologia Computacional , DNA Bacteriano/genética , Bases de Dados Factuais , Biblioteca Gênica , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Isópteros , Sanguessugas , Camundongos , Análise de Componente Principal , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...