Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11673, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669602

RESUMO

We demonstrate a method for characterizing the field-dependent aberrations of a full-field synchrotron-based extreme ultraviolet microscope. The statistical uniformity of the inherent, atomic-scale roughness of readily-available photomask blanks enables a self-calibrating computational procedure using images acquired under standard operation. We characterize the aberrations across a 30-um field-of-view, demonstrating a minimum aberration magnitude of smaller than [Formula: see text] averaged over the center 5-um area, with a measurement accuracy better than [Formula: see text]. The measured field variation of aberrations is consistent with system geometry and agrees with prior characterizations of the same system. In certain cases, it may be possible to additionally recover the illumination wavefront from the same images. Our method is general and is easily applied to coherent imaging systems with steerable illumination without requiring invasive hardware or custom test objects; hence, it provides substantial benefits when characterizing microscopes and high-resolution imaging systems in situ.

2.
Appl Opt ; 56(12): 3325-3328, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430243

RESUMO

It is now well established that extreme ultraviolet (EUV) mask multilayer roughness leads to wafer-plane line-width roughness (LWR) in the lithography process. Analysis and modeling done to date has assumed, however, that the roughness leading to scatter is primarily a phase effect and that the amplitude can be ignored. Under this assumption, simple scattering measurements can be used to characterize the statistical properties of the mask roughness. Here, we explore the implications of this simplifying assumption by modeling the imaging impacts of the roughness amplitude component as a function of the balance between amplitude and phase induced scatter. In addition to model-based analysis, we also use an EUV microscope to compare experimental through focus data to modeling in order to assess the actual amount of amplitude roughness on a typical EUV multilayer mask. The results indicate that amplitude roughness accounts for less than 1% of the total scatter for typical EUV masks.

3.
Rev Sci Instrum ; 80(3): 033113, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334913

RESUMO

A spatially resolving detector for the extreme ultraviolet (XUV) and soft x-ray spectral region is presented. Principle of operation is conversion of XUV radiation to visible light by a scintillator crystal. Luminescence is detected using charge coupled device camera and imaging optics. Single layer and multilayer coatings are applied to match the system to different spectral regions of interest. Field of view and spatial resolution can be adapted to the application. Calibration of the system enables to absolutely measure in-band radiation flux on the scintillator. The setup is designed for the characterization and optimization of XUV sources and XUV optical systems. Measurements, carried out to characterize the focus in a soft x-ray microscope, are presented as an application example.

4.
Opt Lett ; 33(20): 2359-61, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923622

RESUMO

We report on a soft x-ray microscope using a gas-discharge plasma with pseudo spark-like electrode geometry as a light source. The source produces a radiant intensity of 4 x 10(13) photons/(sr pulse) for the 2.88 nm emission line of helium-like nitrogen. At a demonstrated 1 kHz repetition rate a brilliance of 4.3 x 10(9) photons/(microm2 sr s) is obtained for the 2.88 nm line. Ray-tracing simulations show that, employing an adequate grazing incidence collector, a photon flux of 1 x 10(7) photons/(microm2 s) can be achieved with the current source. The applicability of the presented pinch plasma concept to soft x-ray microscopy is demonstrated in a proof-of-principle experiment.


Assuntos
Gases , Luz , Microscopia/instrumentação , Nitrogênio/química , Óptica e Fotônica , Desenho de Equipamento , Hélio , Lasers , Látex , Lentes , Microscopia/métodos , Fótons , Refratometria/instrumentação , Titânio , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA