Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Membr Biol ; 29(7): 274-89, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22583025

RESUMO

The in vitro culture of cells offers an extremely valuable method for probing biochemical questions and many commonly-used protocols are available. For mammalian cells a source of lipid is usually provided in the serum component. In this study we examined the question as to whether the nature of the lipid could become limiting at high cell densities and, therefore, prospectively influence the metabolism and physiology of the cells themselves. When B16 mouse melanoma cells were cultured, we noted a marked decrease in the proportions of n-3 and n-6 polyunsaturated fatty acids (PUFAs) with increasing cell density. This was despite considerable quantities of these PUFAs still remaining in the culture medium and seemed to reflect the preferential uptake of unesterified PUFA rather than other lipid classes from the media. The reduction in B16 total PUFA was reflected in changes in about 70% of the molecular species of membrane phosphoglycerides which were analysed by mass spectrometry. The importance of this finding lies in the need for n-3 and n-6 PUFA in mammalian cells (which cannot synthesize their own). Although the cholesterol content of cells was unchanged the amount of cholesterol enrichment in membrane rafts (as assessed by fluorescence) was severely decreased, simultaneous with a reduced heat shock response following exposure to 42°C. These data emphasize the pivotal role of nutrient supply (in this case for PUFAs) in modifying responses to stress and highlight the need for the careful control of culture conditions when assessing cellular responses in vitro.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Glicerofosfolipídeos/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Cultura/farmacologia , Ácidos Graxos Insaturados/metabolismo , Temperatura Alta , Melanoma/patologia , Camundongos
2.
PLoS One ; 6(6): e21182, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698159

RESUMO

Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.


Assuntos
Temperatura Alta , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Corantes Fluorescentes , Proteínas de Choque Térmico/metabolismo , Humanos , Células K562
3.
Biochim Biophys Acta ; 1801(9): 1036-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20430110

RESUMO

Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.


Assuntos
Álcool Benzílico/farmacologia , Membrana Celular/metabolismo , Resposta ao Choque Térmico , Lipídeos/análise , Melanoma Experimental/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Ácido Araquidônico/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray , Células Tumorais Cultivadas
4.
FEBS J ; 272(23): 6077-86, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16302971

RESUMO

The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 degrees C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)-70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+-containing and Ca2+-free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein-unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.


Assuntos
Anestésicos Locais/farmacologia , Álcool Benzílico/farmacologia , Membrana Celular , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Heptanol/farmacologia , Fluidez de Membrana , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Forma Celular , Células HeLa , Temperatura Alta , Humanos , Células K562 , Potenciais da Membrana/fisiologia , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...