Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678477

RESUMO

Garlic (Allium sativum L.) is a clonally propagated bulbous crop and can be infected by several viruses under field conditions. A virus complex reduces garlic yield and deteriorates the quality of the produce. In the present study, we aimed to eliminate Onion yellow dwarf virus (OYDV), Garlic common latent virus (GCLV), Shallot latent virus (SLV), and Allexiviruses from the infected crop using combination of meristem culture, thermotherapy, and chemotherapy. In this study, seven different treatments, namely shoot meristem culture, thermotherapy direct culture, chemotherapy direct culture, chemotherapy + meristem culture, thermotherapy + meristem culture, thermotherapy + chemotherapy direct culture, and thermotherapy + chemotherapy + meristem culture (TCMC), were used. Multiplex polymerase chain reaction (PCR) was employed to detect virus elimination, which revealed the percentage of virus-free plants was between 65 and 100%, 55 and 100%, and 13 and 100% in the case of GCLV, SLV, and OYDV, respectively. The in vitro regeneration efficiency was between 66.06 and 98.98%. However, the elimination of Allexiviruses could not be achieved. TCMC was the most effective treatment for eliminating GCLV, SLV, and OYDV from garlic, with 66.06% plant regeneration efficiency. The viral titre of the Allexivirus under all the treatments was monitored using real-time PCR, and the lowest viral load was observed in the TCMC treatment. The present study is the first to report the complete removal of GCLV, SLV, and OYDV from Indian red garlic with the application of thermotherapy coupled with chemotherapy and shoot meristem culture.

2.
Saudi J Biol Sci ; 28(8): 4833-4844, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354473

RESUMO

The characterization of garlic germplasm improves its utility, despite the fact that garlic hasn't been used much in the past. Garlic has an untapped genetic pool of immense economic and medicinal value in India. Hence, using heuristic core collection approach, a core set of 46 accessions were selected from 625 Indian garlic accessions based on 13 quantitative and five qualitative traits. The statistical measures (CV per cent, CR per cent, VR per cent) were used to sort the core set using Shannon-Wiener diversity index and the Nei diversity index. In addition, the variation within the core set was tested for 18 agro-morphological and six biochemical characteristics (allicin, phenol content, pyruvic acid, protein, allyl methyl thiosulfinate (AMTHS), and methyl allyl thiosulfinate (MATHS)). Further study of the core set's molecular diversity was performed using sequence related amplified polymorphism (SRAP) markers, which revealed a wide range of diversity among the core set's accessions, with an average polymorphism efficiency (PE) of 80.59 percent, polymorphism information content (PIC) of 0.29, effective multiplex ratio (EMR) of 3.51, and marker index (MI) of 0.99. The findings of this study will be useful in identifying high-yielding, elite garlic germplasm lines with the trait of interest. Since this core set is indicative of total germplasm, these selected breeding lines will be used for genetic improvement of garlic in the future.

3.
PeerJ ; 8: e9824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974094

RESUMO

BACKGROUND: The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops. METHOD: In the present review, major omics approaches, and their progress, as well as potential applications in Allium crops, could be discussed in detail. RESULTS: Here, we have discussed the recent progress made in Allium research using omics technologies such as genomics, transcriptomics, micro RNAs, proteomics, metabolomics, and metagenomics. These omics interventions have been used in alliums for marker discovery, the study of the biotic and abiotic stress response, male sterility, organ development, flavonoid and bulb color, micro RNA discovery, and microbiome associated with Allium crops. Further, we also emphasized the integrated use of these omics platforms for a better understanding of the complex molecular mechanisms to speed up the breeding programs for better cultivars. CONCLUSION: All the information and literature provided in the present review throws light on the progress and potential of omics platforms in the research of Allium crops. We also mentioned a few research areas in Allium crops that need to be explored using omics technologies to get more insight. Overall, alliums are an under-studied group of plants, and thus, there is tremendous scope and need for research in Allium species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA