Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 142: 501-514, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696733

RESUMO

This paper presents a novel real-time singularity-based fault diagnosis method for tidal current applications, specifically utilizing a five-phase permanent magnet synchronous generator with trapezoidal back electromotive forces. The proposed method incorporates an innovative orthogonal signal generator through a second-order filter, enabling the extraction of detectable singularity signatures from phase current signals. The principle of the method is elucidated through step-by-step design procedures, outlining the indicator enhancement approach and adaptive thresholds employed for enhanced robustness and adaptability. Fault detection is performed based on the improved fault indicators and an adaptive threshold law, followed by immediate fault localization that is achieved via twice average operations of the phase currents. To demonstrate the effectiveness and efficiency of the proposed method, a comparative study is carried out with a classical mean current vector-based fault diagnosis method. A small-scale experimental platform emulating a tidal current application is established for a comprehensive evaluation of both methods. The experimental results highlight the superior fault diagnosis performance of the proposed method, particularly in detecting single and multiple open circuit faults in phases or switches, while exhibiting enhanced robustness against variations in torque and speed. The simplicity of implementation and rapid detection mechanism are principal merits for the proposed method.

2.
ISA Trans ; 74: 111-119, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29336788

RESUMO

Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted.

3.
ISA Trans ; 53(4): 1143-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928751

RESUMO

This paper deals with an approach of modelling in view of control for embarked networks which can be described as strongly coupled multi-sources, multi-loads systems with nonlinear and badly known characteristics. This model has to be representative of the system behaviour and easy to handle for easy regulators synthesis. As a first step, each alternator is modelled and linearized around an operating point and then it is subdivided into two lower order systems according to the singular perturbation theory. RST regulators are designed for each subsystem and tested by means of a software test-bench which allows predicting network behaviour in both steady and transient states. Finally, the designed controllers are implanted on an experimental benchmark constituted by two alternators supplying loads in order to test the dynamic performances in realistic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...