Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12993, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844598

RESUMO

This paper describes a novel 4-D hyperchaotic system with a high level of complexity. It can produce chaotic, hyperchaotic, periodic, and quasi-periodic behaviors by adjusting its parameters. The study showed that the new system experienced the famous dynamical property of multistability. It can exhibit different coexisting attractors for the same parameter values. Furthermore, by using Lyapunov exponents, bifurcation diagram, equilibrium points' stability, dissipativity, and phase plots, the study was able to investigate the dynamical features of the proposed system. The mathematical model's feasibility is proved by applying the corresponding electronic circuit using Multisim software. The study also reveals an interesting and special feature of the system's offset boosting control. Therefore, the new 4D system is very desirable to use in Chaos-based applications due to its hyperchaotic behavior, multistability, offset boosting property, and easily implementable electronic circuit. Then, the study presents a voice encryption scheme that employs the characteristics of the proposed hyperchaotic system to encrypt a voice signal. The new encryption system is implemented on MATLAB (R2023) to simulate the research findings. Numerous tests are used to measure the efficiency of the developed encryption system against attacks, such as histogram analysis, percent residual deviation (PRD), signal-to-noise ratio (SNR), correlation coefficient (cc), key sensitivity, and NIST randomness test. The simulation findings show how effective our proposed encryption system is and how resilient it is to different cryptographic assaults.

2.
PLoS One ; 17(4): e0266053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35413048

RESUMO

This work introduce a new high dimensional 10-D hyperchaotic system with high complexity and many of coexisting attractors. With the adjustment of its parameters and initial points, the novel system can generate periodic, quasi-periodic, chaotic, and hyperchaotic behaviours. For special values of parameters, we show that the proposed 10-D system has a very high Kaplan-Yorke fractal dimension, which can reach up to 9.067 indicating the very complexity of the 10-D system dynamics. In addition, the proposed system is shown to exhibit at least six varied attractors for the same values of parameters due to its multistability. Regions of multistability are identified by analysing the bifurcation diagrams of the proposed model versus its parameters and for six different values of initial points. Many of numerical plots are given to show the appearance of different dynamical behaviours and the existence of multiple coexisting attractors. The main problem with controlling chaos/hyperchaos systems is that they are not always fully synchronized. therefore, some powerful synchronization techniques should be considered. The synchronization between the high-dimensional 10-D system and a set of three low-dimensional chaotic and hyperchaotic systems is proposed. Ten control functions are designed using the active control method, ensuring synchronisation between the collection of systems and the 10-D hyperchaotic system. Finally, using Multisim 13.0 software to construct the new system's electronic circuit, the feasibility of the new system with its extremely complicated dynamics is verified. Therefore, the novel 10-D hyperchaotic system can be applied to different chaotic-based application due to its large dimension, complex dynamics, and simple circuit architecture.


Assuntos
Fractais , Dinâmica não Linear , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA