Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Thorac Surg ; 71(3 Suppl): S133-8; discussion S144-6, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11265848

RESUMO

BACKGROUND: The MicroMed DeBakey ventricular assist device (VAD) (MicroMed Technology, Inc, Houston, TX) is the first long-term axial flow circulatory assist device to be introduced into clinical trials as a bridge to transplantation. Clinical trials began in Europe in November 1998 and in the United States in June 2000. METHODS: To qualify for the study, the patients must be listed for cardiac transplantation and must have demonstrated profound cardiac failure. There were no exclusions to the MicroMed DeBakey VAD implant other than those patients who would typically be excluded from cardiac transplantation. RESULTS: As of September 2000, 51 patients have been implanted with the MicroMed DeBakey VAD. A detailed evaluation of the first 32 patients has been completed. With current data, the probability of survival at 30 days after VAD implant is 81%. CONCLUSIONS: The clinical trial demonstrated that the MicroMed DeBakey VAD is capable of providing adequate circulatory support in patients with severe heart failure, sufficient to recover and return to normal activities while awaiting a heart transplantation. Much has been learned about the function of the device and its continuous flow in humans.


Assuntos
Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Desenho de Equipamento , Feminino , Humanos , Masculino , Implantação de Prótese/métodos
2.
Artif Organs ; 20(7): 794-7, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8828770

RESUMO

Pump power loss is defined as input power that is not used for the output work of the pump. Less pump power loss means a higher pump efficiency. A common opinion is that the pump power loss is closely related to heat generation of the pump, which may affect not only the endurance of pump materials, but also blood damage in a blood pump. In this study, the relationship between pump power loss and heat generation in centrifugal blood pumps was investigated using the pivot-bearing supported Gyro C1E3 pump (C1E3) and Bio-Medicus pump (BP-80) under four different total pressure heat/flow conditions. A single special torque measuring driver motor was used for operating both the C1E3 and BP-80 in the four conditions. The pump power loss was calculated from the measured motor torque and hydraulic power. The changes in blood temperature were measured while the pump was operated at room temperature (25 degrees C) to obtain the following findings: First, the C1E3 caused less pump power loss and less temperature increase in blood than the BP-80 in all clinical simulated conditions that were tested; and second, the pump power loss and heat generation had a linear correlation with temperature rise from 22 to 25 degrees C in both the C1E3 and BP-80. During this period, approximately 30% of the pump power loss was transformed to heat, independent of the centrifugal blood pump type, provided that heat conduction through the pump housing and tubing was negligible during this particular period.


Assuntos
Temperatura Corporal/fisiologia , Oxigenação por Membrana Extracorpórea/normas , Coração Auxiliar/normas , Animais , Fenômenos Fisiológicos Sanguíneos , Bovinos , Centrifugação , Pressão , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...