Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 18(3): e10820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35225431

RESUMO

Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different S. cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase-substrate relationships were analyzed in a phospho-yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8, and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14-3-3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity-dependent readouts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Life Sci Alliance ; 1(5): e201800178, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456387

RESUMO

Systematic analysis of human arginine methylation identifies two distinct signaling modes; either isolated modifications akin to canonical post-translational modification regulation, or clustered arrays within disordered protein sequence. Hundreds of proteins contain these methyl-arginine arrays and are more prone to accumulate mutations and more tightly expression-regulated than dispersed methylation targets. Arginines within an array in the highly methylated RNA-binding protein synaptotagmin binding cytoplasmic RNA interacting protein (SYNCRIP) were experimentally shown to function in concert, providing a tunable protein interaction interface. Quantitative immunoprecipitation assays defined two distinct cumulative binding mechanisms operating across 18 proximal arginine-glycine (RG) motifs in SYNCRIP. Functional binding to the methyltransferase PRMT1 was promoted by continual arginine stretches, whereas interaction with the methyl-binding protein SMN1 was arginine content-dependent irrespective of linear position within the unstructured region. This study highlights how highly repetitive modifiable amino acid arrays in low structural complexity regions can provide regulatory platforms, with SYNCRIP as an extreme example how arginine methylation leverages these disordered sequences to mediate cellular interactions.

3.
Mol Cell Proteomics ; 15(8): 2594-606, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27194810

RESUMO

The nuclear pore complex (NPC) enables transport across the nuclear envelope. It is one of the largest multiprotein assemblies in the cell, built from about 30 proteins called nucleoporins (Nups), organized into distinct subcomplexes. Structure determination of the NPC is a major research goal. The assembled ∼40-112 MDa NPC can be visualized by cryoelectron tomography (cryo-ET), while Nup subcomplexes are studied crystallographically. Docking the crystal structures into the cryo-ET maps is difficult because of limited resolution. Further, intersubcomplex contacts are not well characterized. Here, we systematically investigated direct interactions between Nups. In a comprehensive, structure-based, yeast two-hybrid interaction matrix screen, we mapped protein-protein interactions in yeast and human. Benchmarking against crystallographic and coaffinity purification data from the literature demonstrated the high coverage and accuracy of the data set. Novel intersubcomplex interactions were validated biophysically in microscale thermophoresis experiments and in intact cells through protein fragment complementation. These intersubcomplex interaction data provide direct experimental evidence toward possible structural arrangements of architectural elements within the assembled NPC, or they may point to assembly intermediates. Our data favors an assembly model in which major architectural elements of the NPC, notably the Y-complex, exist in different structural contexts within the scaffold.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Multimerização Proteica , Proteoma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Mol Syst Biol ; 11(3): 794, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25814554

RESUMO

Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein-protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes.


Assuntos
Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Tirosina/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido
5.
Nat Methods ; 10(4): 339-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455924

RESUMO

To accelerate high-density interactome mapping, we developed a yeast two-hybrid interaction screening approach involving short-read second-generation sequencing (Y2H-seq) with improved sensitivity and a quantitative scoring readout allowing rapid interaction validation. We applied Y2H-seq to investigate enzymes involved in protein methylation, a largely unexplored post-translational modification. The reported network of 523 interactions involving 22 methyltransferases or demethylases is comprehensively annotated and validated through coimmunoprecipitation experiments and defines previously undiscovered cellular roles of nonhistone protein methylation.


Assuntos
Metiltransferases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido , Cromatografia Líquida , Escherichia coli , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Metiltransferases/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Espectrometria de Massas em Tandem
6.
EMBO Rep ; 8(6): 576-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17510655

RESUMO

Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.


Assuntos
Evolução Molecular , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Canais de Ânion Dependentes de Voltagem/biossíntese , Animais , Proteínas de Ciclo Celular , Células HeLa , Humanos , Ativação do Canal Iônico , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...