Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(7): 110376, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172163

RESUMO

Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.


Assuntos
Bacteriófagos/fisiologia , Decapodiformes/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Modelos Biológicos , Simbiose/fisiologia , Aliivibrio fischeri/virologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Mutação/genética , Plâncton/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(44): 27578-27586, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067391

RESUMO

The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.


Assuntos
Aliivibrio fischeri/metabolismo , Ritmo Circadiano/fisiologia , Decapodiformes/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Movimento Celular , Quitina/metabolismo , Decapodiformes/microbiologia , Feminino , Hemócitos/metabolismo , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Simbiose/fisiologia
3.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873761

RESUMO

The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the Vibrio cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production.IMPORTANCE TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here, we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike those in V. cholerae Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Proteínas de Bactérias/genética , Simbiose , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Decapodiformes/microbiologia , Luminescência , Fatores de Virulência/genética
4.
J Bacteriol ; 201(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31331976

RESUMO

Outer membrane vesicles (OMVs) are continuously produced by Gram-negative bacteria and are increasingly recognized as ubiquitous mediators of bacterial physiology. In particular, OMVs are powerful effectors in interorganismal interactions, driven largely by their molecular contents. These impacts have been studied extensively in bacterial pathogenesis but have not been well documented within the context of mutualism. Here, we examined the proteomic composition of OMVs from the marine bacterium Vibrio fischeri, which forms a specific mutualism with the Hawaiian bobtail squid, Euprymna scolopes We found that V. fischeri upregulates transcription of its major outer membrane protein, OmpU, during growth at an acidic pH, which V. fischeri experiences when it transitions from its environmental reservoir to host tissues. We used comparative genomics and DNA pulldown analyses to search for regulators of ompU and found that differential expression of ompU is governed by the OmpR, H-NS, and ToxR proteins. This transcriptional control combines with nutritional conditions to govern OmpU levels in OMVs. Under a host-encountered acidic pH, V. fischeri OMVs become more potent stimulators of symbiotic host development in an OmpU-dependent manner. Finally, we found that symbiotic development could be stimulated by OMVs containing a homolog of OmpU from the pathogenic species Vibrio cholerae, connecting the role of a well-described virulence factor with a mutualistic element. This work explores the symbiotic effects of OMV variation, identifies regulatory machinery shared between pathogenic and mutualistic bacteria, and provides evidence of the role that OMVs play in animal-bacterium mutualism.IMPORTANCE Beneficial bacteria communicate with their hosts through a variety of means. These communications are often carried out by a combination of molecules that stimulate responses from the host and are necessary for development of the relationship between these organisms. Naturally produced bacterial outer membrane vesicles (OMVs) contain many of those molecules and can stimulate a wide range of responses from recipient organisms. Here, we describe how a marine bacterium, Vibrio fischeri, changes the makeup of its OMVs under conditions that it experiences as it goes from its free-living lifestyle to associating with its natural host, the Hawaiian bobtail squid. This work improves our understanding of how bacteria change their signaling profile as they begin to associate with their beneficial partner animals.


Assuntos
Aliivibrio fischeri/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Decapodiformes/microbiologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Aliivibrio fischeri/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Regulação Bacteriana da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Concentração de Íons de Hidrogênio , Simbiose , Regulação para Cima
5.
J Bacteriol ; 200(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378887

RESUMO

Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis, which demonstrate that the protease ClpXP is required for anaerobic Fe2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe2+ anaerobically, indicating Fe2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe2+ and that the ClpXP protease system is necessary for their turnover.IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe2+ from iron oxide minerals. Dissimilatory metal-reducing bacteria must therefore have mechanisms to tolerate anaerobic Fe2+ stress, and studying resistance in these organisms may help elucidate the basis of toxicity. Shewanella oneidensis is a model dissimilatory metal-reducing bacterium isolated from metal-rich sediments. Here we demonstrate a role for ClpXP, a protease system widely conserved in bacteria, in anaerobic Fe2+ resistance in both S. oneidensis and Escherichia coli.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Compostos Férricos/metabolismo , Chaperonas Moleculares/metabolismo , Shewanella/genética , Anaerobiose , Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Escherichia coli/genética , Deleção de Genes , Ferro/metabolismo , Chaperonas Moleculares/genética , Oxirredução , Shewanella/enzimologia , Estresse Fisiológico
6.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330185

RESUMO

The transport of metals into and out of cells is necessary for the maintenance of appropriate intracellular concentrations. Metals are needed for incorporation into metalloproteins but become toxic at higher concentrations. Many metal transport proteins have been discovered in bacteria, including the Mg2+ transporter E (MgtE) family of passive Mg2+/Co2+ cation-selective channels. Low sequence identity exists between members of the MgtE family, indicating that substrate specificity may differ among MgtE transporters. Under anoxic conditions, dissimilatory metal-reducing bacteria, such as Shewanella and Geobacter species, are exposed to high levels of soluble metals, including Fe2+ and Mn2+ Here we characterize SO_3966, which encodes an MgtE homolog in Shewanella oneidensis that we name FicI (ferrous iron and cobalt importer) based on its role in maintaining metal homeostasis. A SO_3966 deletion mutant exhibits enhanced growth over that of the wild type under conditions with high Fe2+ or Co2+ concentrations but exhibits wild-type Mg2+ transport and retention phenotypes. Conversely, deletion of feoB, which encodes an energy-dependent Fe2+ importer, causes a growth defect under conditions of low Fe2+ concentrations but not high Fe2+ concentrations. We propose that FicI represents a secondary, less energy-dependent mechanism for iron uptake by S. oneidensis under high Fe2+ concentrations.IMPORTANCEShewanella oneidensis MR-1 is a target of microbial engineering for potential uses in biotechnology and the bioremediation of heavy-metal-contaminated environments. A full understanding of the ways in which S. oneidensis interacts with metals, including the means by which it transports metal ions, is important for optimal genetic engineering of this and other organisms for biotechnology purposes such as biosorption. The MgtE family of metal importers has been described previously as Mg2+ and Co2+ transporters. This work broadens that designation with the discovery of an MgtE homolog in S. oneidensis that imports Fe2+ but not Mg2+ The research presented here also expands our knowledge of the means by which microorganisms have adapted to take up essential nutrients such as iron under various conditions.


Assuntos
Proteínas de Bactérias/genética , Compostos Ferrosos/metabolismo , Hexosiltransferases/genética , Shewanella/genética , Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Shewanella/metabolismo
7.
Appl Environ Microbiol ; 81(22): 7938-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341213

RESUMO

Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe(3+)) results in the production of ferrous iron (Fe(2+)) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe(2+) from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe(2+). The export function of FeoE is specific for Fe(2+), as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), or Zn(2+)). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd(2+)/Zn(2+) or Fe(2+)/Zn(2+) exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe(2+) compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe(2+) exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Shewanella/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Oxirredução , Shewanella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...