Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Med Child Neurol ; 65(1): 50-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35701389

RESUMO

AIM: To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD: Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS: Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION: We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS: The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.


Assuntos
Exoma , Espasmos Infantis , Criança , Masculino , Feminino , Humanos , Exoma/genética , Sequenciamento do Exoma , Espasmos Infantis/genética , Convulsões/genética
2.
Brain ; 145(7): 2313-2331, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35786744

RESUMO

Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2ß, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases , Epilepsias Parciais , Animais , Classe II de Fosfatidilinositol 3-Quinases/genética , Epilepsias Parciais/genética , Humanos , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Convulsões
3.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137044

RESUMO

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Assuntos
Ciliopatias , Hamartoma , Doenças Hipotalâmicas , Ciliopatias/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/genética , Imageamento por Ressonância Magnética
4.
Neurol Genet ; 3(4): e163, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28717674

RESUMO

OBJECTIVE: To assist the interpretation of genomic data for common epilepsies, we asked whether variants implicated in mild epilepsies in autosomal dominant families are present in the general population. METHODS: We studied 12 genes for the milder epilepsies and identified published variants with strong segregation support (de novo germline mutation or ≥4 affected family members). These variants were checked in the Exome Aggregation Consortium (ExAC), a database of genetic variation in over 60,000 individuals. We subsequently evaluated variants in these epilepsy genes that lacked strong segregation support. To determine whether the findings in epilepsies were representative of other diseases, we also assessed the presence of variants in other dominant neurologic disorders (e.g., CADASIL). RESULTS: Published epilepsy variants with strong segregation support (n = 65) were absent (n = 61) or present once (n = 4) in ExAC. By contrast, of 46 published epilepsy variants without strong segregation support, 8 occurred recurrently (2-186 times). Similarly, none of the 45 disease-associated variants from other neurologic disorders with strong segregation support occurred more than once in ExAC. Reanalysis using the larger ExAC V2 plus gnomAD reference cohort showed consistent results. CONCLUSIONS: Variants causing autosomal dominant epilepsies are ultra-rare in the general population. Variants observed more than once in ExAC were only found among reports without strong segregation support, suggesting that they may be benign. Clinicians are increasingly faced with the interpretation of genetic variants of unknown significance. These data illustrate that variants present more than once in ExAC are less likely to be pathogenic, reinforcing the valuable clinical role of ExAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...