Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Invest Dermatol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38897541

RESUMO

RAS proteins regulate cell division, differentiation and apoptosis via multiple downstream effector pathways. Oncogenic RAS variants are the commonest drivers in cancers, however they also drive many benign lesions predisposing to malignancy, such as melanocytic naevi, thyroid nodules, and colonic polyps. Reversal of these benign lesions could reduce cancer incidence, however the effects of oncogenic RAS have been notoriously difficult to target with downstream pathway inhibitors. Here we show effective suppression of oncogenic and currently undruggable NRASQ61K in primary cells from melanocytic naevi using siRNA targeted to the recurrent causal variant. This results in striking reduction in expression of ARL6IP1, a known inhibitor of endoplasmic reticulum stress-induced apoptosis not previously linked to NRAS. We go on to show that a single dose of siRNA in primary cells triggers an apoptotic cascade, in contrast to treatment with a MEK inhibitor. Protective packaging of the targeted siRNA into lipid nanoparticles permits successful delivery into a humanised mouse model of melanocytic naevi, and results in variant NRAS knockdown in vivo. These data show that RAS-induced protection from apoptosis is involved in persistence of NRAS-driven melanocytic naevi and anticipate that targeted siRNA could form the basis of clinical trials for RAS-driven benign tumours.

2.
Pigment Cell Melanoma Res ; 37(3): 391-402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361107

RESUMO

Melanocytic nevi (skin moles) have been regarded as a valuable example of cell senescence occurring in vivo. However, a study of induced nevi in a mouse model reported that the nevi were arrested by cell interactions rather than a cell-autonomous process like senescence, and that size distributions of cell nests within nevi could not be accounted for by a stochastic model of oncogene-induced senescence. Moreover, others reported that some molecular markers used to identify cell senescence in human nevi are also found in melanoma cells-not senescent. It has thus been questioned whether nevi really are senescent, with potential implications for melanoma diagnosis and therapy. Here I review these areas, along with the genetic, biological, and molecular evidence supporting senescence in nevi. In conclusion, there is strong evidence that cells of acquired human benign (banal) nevi are very largely senescent, though some must contain a minor non-senescent cell subpopulation. There is also persuasive evidence that this senescence is primarily induced by dysfunctional telomeres rather than directly oncogene-induced.


Assuntos
Senescência Celular , Neoplasias Cutâneas , Humanos , Senescência Celular/genética , Animais , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Nevo Pigmentado/patologia , Nevo Pigmentado/genética , Camundongos , Telômero/metabolismo , Telômero/genética
3.
Biol Open ; 12(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522264

RESUMO

We report the identification of a synthetic, cell-penetrating peptide able to kill human melanoma cells efficiently and selectively, while being less toxic to normal human melanocytes and nontoxic to human fibroblasts. The peptide is based on the target-binding site of the melanoma suppressor and senescence effector p16 (also known as INK4A or CDKN2A), coupled to a cell-penetrating moiety. The killing is by apoptosis and appears to act by a route other than the canonical downstream target of p16 and CDK4, the retinoblastoma (RB) protein family, as it is also effective in HeLa cells and a melanocyte line expressing HPV E7 oncogenes, which both lack any active RB. There was varying toxicity to other types of cancer cell lines, such as glioblastoma. Melanoma cell killing by a p16-derived peptide was reported once before but only at a higher concentration, while selectivity and generality were not previously tested.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Melanoma , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células HeLa , Senescência Celular , Melanócitos/metabolismo , Proteína do Retinoblastoma/metabolismo
4.
Sci Rep ; 13(1): 12309, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516749

RESUMO

WDR11, a gene associated with Kallmann syndrome, is important in reproductive system development but molecular understanding of its action remains incomplete. We previously reported that Wdr11-deficient embryos exhibit defective ciliogenesis and developmental defects associated with Hedgehog (HH) signalling. Here we demonstrate that WDR11 is required for primordial germ cell (PGC) development, regulating canonical and noncanonical HH signalling in parallel. Loss of WDR11 disrupts PGC motility and proliferation driven by the cilia-independent, PTCH2/GAS1-dependent noncanonical HH pathway. WDR11 modulates the growth of somatic cells surrounding PGCs by regulating the cilia-dependent, PTCH1/BOC-dependent canonical HH pathway. We reveal that PTCH1/BOC or PTCH2/GAS1 receptor context dictates SMO localisation inside or outside of cilia, respectively, and loss of WDR11 affects the signalling responses of SMO in both situations. We show that GAS1 is induced by PTCH2-specific HH signalling, which is lost in the absence of WDR11. We also provide evidence supporting a role for WDR11 in ciliogenesis through regulation of anterograde intraflagellar transport potentially via its interaction with IFT20. Since WDR11 is a target of noncanonical SMO signalling, WDR11 represents a novel mechanism by which noncanonical and canonical HH signals communicate and cooperate.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/genética , Diferenciação Celular , Transporte Biológico , Células Germinativas
5.
Curr Protoc ; 3(5): e774, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37154440

RESUMO

Located in the basal epidermis and hair follicles, melanocytes of the integument are responsible for its coloration through production of melanin pigments. Melanin is produced in a type of lysosome-related-organelle (LRO) called the melanosome. In humans, this skin pigmentation acts as an ultraviolet radiation filter. Abnormalities in the division of melanocytes are quite common, with potentially oncogenic growth usually followed by cell senescence producing benign naevi (moles), or occasionally, melanoma. Therefore, melanocytes are a useful model for studying both cellular senescence and melanoma, as well as many other aspects of biology such as pigmentation, organelle biogenesis and transport, and the diseases affecting these mechanisms. Melanocytes for use in basic research can be obtained from a range of sources, including surplus postoperative skin or from congenic murine skin. Here we describe methods to isolate and culture melanocytes from both human and murine skin (including the preparation of mitotically inactive keratinocytes for use as feeder cells). We also describe a high-throughput transfection protocol for human melanocytes and melanoma cells. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primary explantation of human melanocytic cells Basic Protocol 2: Preparation of keratinocyte feeder cells for use in the primary culture of mouse melanocytes Basic Protocol 3: Primary culture of melanocytes from mouse skin Basic Protocol 4: Transfection of human melanocytes and melanoma cells.


Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melaninas , Raios Ultravioleta , Melanócitos , Melanoma/genética , Transfecção
6.
Cell Mol Life Sci ; 79(1): 47, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921635

RESUMO

Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.


Assuntos
Pigmentação , Pele/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Humanos , Concentração de Íons de Hidrogênio , Melanócitos , Melanoma Experimental , Melanossomas , Camundongos , Pele/citologia , Pele/patologia
7.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886957

RESUMO

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Proteínas do Tecido Nervoso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endossomos/genética , Humanos , Melanócitos/metabolismo , Melanossomas/genética , Transporte Proteico/genética
8.
Cancers (Basel) ; 12(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019669

RESUMO

The mouse mahoganoid mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared Mgrn1-knockout melanocytes with genetically matched controls and melan-md1 (mahoganoid) melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells. Lack of MGRN1 expression decreased the ability of melanocytes to cope with DNA breaks generated by oxidizing agents or hydroxyurea-induced replicative stress, suggesting a contribution of genomic instability to the mahoganoid phenotype. MGRN1 knockout in B16-F10 melanoma cells also augmented pigmentation, increased cell adhesion to collagen, impaired 2D and 3D motility and caused genomic instability. Tumors formed by Mgrn1-KO B16-F10 cells had lower mitotic indices, fewer Ki67-positive cells and showed a trend towards smaller size. In short-term lung colonization assays Mgrn1-KO cells showed impaired colonization potential. Moreover, lower expression of MGRN1 is significantly associated with better survival of human melanoma patients. Therefore, MGRN1 might be an important phenotypic determinant of melanoma cells.

9.
J Natl Compr Canc Netw ; 18(10): 1327-1336, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022642

RESUMO

BACKGROUND: Atypical melanocytic tumors (AMTs) include a wide spectrum of melanocytic neoplasms that represent a challenge for clinicians due to the lack of a definitive diagnosis and the related uncertainty about their management. This study analyzed clinicopathologic features and sentinel node status as potential prognostic factors in patients with AMTs. PATIENTS AND METHODS: Clinicopathologic and follow-up data of 238 children, adolescents, and adults with histologically proved AMTs consecutively treated at 12 European centers from 2000 through 2010 were retrieved from prospectively maintained databases. The binary association between all investigated covariates was studied by evaluating the Spearman correlation coefficients, and the association between progression-free survival and all investigated covariates was evaluated using univariable Cox models. The overall survival and progression-free survival curves were established using the Kaplan-Meier method. RESULTS: Median follow-up was 126 months (interquartile range, 104-157 months). All patients received an initial diagnostic biopsy followed by wide (1 cm) excision. Sentinel node biopsy was performed in 139 patients (58.4%), 37 (26.6%) of whom had sentinel node positivity. There were 4 local recurrences, 43 regional relapses, and 8 distant metastases as first events. Six patients (2.5%) died of disease progression. Five patients who were sentinel node-negative and 3 patients who were sentinel node-positive developed distant metastases. Ten-year overall and progression-free survival rates were 97% (95% CI, 94.9%-99.2%) and 82.2% (95% CI, 77.3%-87.3%), respectively. Age, mitotic rate/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss were factors affecting prognosis in the whole series and the sentinel node biopsy subgroup. CONCLUSIONS: Age >20 years, mitotic rate >4/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss proved to be worse prognostic factors in patients with ATMs. Sentinel node status was not a clear prognostic predictor.


Assuntos
Melanoma , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas , Adolescente , Adulto , Criança , Intervalo Livre de Doença , Humanos , Metástase Linfática , Melanoma/diagnóstico , Mitose , Recidiva Local de Neoplasia , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas/diagnóstico , Adulto Jovem
10.
Mol Biol Cell ; 31(24): 2687-2702, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966160

RESUMO

SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.


Assuntos
Antígenos de Neoplasias/metabolismo , Melanócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pigmentação da Pele/fisiologia , Animais , Antígenos de Neoplasias/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Canais de Cloreto/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Melanossomas/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Pigmentação/fisiologia , Estabilidade Proteica , Pele/metabolismo
12.
J Clin Oncol ; 38(14): 1591-1601, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32167862

RESUMO

PURPOSE: Thin melanomas (T1; ≤ 1 mm) constitute 70% of newly diagnosed cutaneous melanomas. Regional node metastasis determined by sentinel node biopsy (SNB) is an important prognostic factor for T1 melanoma. However, current melanoma guidelines do not provide clear indications on when to perform SNB in T1 disease and stress an individualized approach to SNB that considers all clinicopathologic risk factors. We aimed to identify determinants of sentinel node (SN) status for incorporation into an externally validated nomogram to better select patients with T1 disease for SNB. PATIENTS AND METHODS: The development cohort comprised 3,666 patients with T1 disease consecutively treated at the Istituto Nazionale Tumori (Milan, Italy) between 2001 and 2018; 4,227 patients with T1 disease treated at 13 other European centers over the same period formed the validation cohort. A random forest procedure was applied to the development data set to select characteristics associated with SN status for inclusion in a multiple binary logistic model from which a nomogram was elaborated. Decision curve analyses assessed the clinical utility of the nomogram. RESULTS: Of patients in the development cohort, 1,635 underwent SNB; 108 patients (6.6%) were SN positive. By univariable analysis, age, growth phase, Breslow thickness, ulceration, mitotic rate, regression, and lymphovascular invasion were significantly associated with SN status. The random forest procedure selected 6 variables (not growth phase) for inclusion in the logistic model and nomogram. The nomogram proved well calibrated and had good discriminative ability in both cohorts. Decision curve analyses revealed the superior net benefit of the nomogram compared with each individual variable included in it as well as with variables suggested by current guidelines. CONCLUSION: We propose the nomogram as a decision aid in all patients with T1 melanoma being considered for SNB.

13.
Cell ; 179(4): 813-827, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675495

RESUMO

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Assuntos
Envelhecimento/genética , Biomarcadores , Senescência Celular/genética , Doenças Genéticas Inatas/genética , Pontos de Checagem do Ciclo Celular/genética , Cromatina/genética , Regulação da Expressão Gênica/genética , Doenças Genéticas Inatas/terapia , Humanos
14.
J Neuropathol Exp Neurol ; 78(11): 1066-1072, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553444

RESUMO

Cerebral small vessel disease (cSVD) in penetrating arteries is a major cause of age-related morbidity. Cellular senescence is a molecular process targeted by novel senolytic drugs. We quantified senescence in penetrating arteries and tested whether myocyte senescence was associated with cSVD. We immunolabeled subcortical white matter of older persons (age 80-96 years, n = 60) with minimal AD, using antibodies to 2 established senescence markers (H3K9me3, γH2AX) and a myocyte marker (hSMM). Within the walls of penetrating arteries (20-300 µm), we quantified senescence-associated heterochromatic foci (SAHF)-positive nuclei, cell density (nuclei/µm2), and sclerotic index (SI). Senescent-appearing mural cells were present in small arteries of all cases. cSVD cases exhibited a lower proportion of senescent-appearing cells and lower area fraction (AF%) of SAHF-positive nuclei compared to controls (p = 0.014, 0.016, respectively). cSVD severity and SI both correlated negatively with AF% (p = 0.013, 0.002, respectively). Mural cell density was lower (p < 0.001) and SI higher (p < 0.001) in cSVD, relative to controls. In conclusion, senescent myocyte-like cells were universal in penetrating arteries of an AD-free cohort aged 80 years and older. Senescent-appearing nuclei were more common in persons aged 80 years and older without cSVD compared to cSVD cases, indicating caution in senolytic drug prescribing. Myocyte senescence and cSVD may represent alternative vessel fates in the aging human brain.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Senescência Celular , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Envelhecimento/fisiologia , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Feminino , Humanos , Masculino , Substância Branca/patologia , Substância Branca/fisiopatologia
15.
Pigment Cell Melanoma Res ; 32(2): 259-268, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30117292

RESUMO

Coinheritance of germline mutation in cyclin-dependent kinase inhibitor 2A (CDKN2A) and loss-of-function (LOF) melanocortin 1 receptor (MC1R) variants is clinically associated with exaggerated risk for melanoma. To understand the combined impact of these mutations, we established and tested primary human melanocyte cultures from different CDKN2A mutation carriers, expressing either wild-type MC1R or MC1RLOF variant(s). These cultures expressed the CDKN2A product p16 (INK4A) and functional MC1R. Except for 32ins24 mutant melanocytes, the remaining cultures showed no detectable aberrations in proliferation or capacity for replicative senescence. Additionally, the latter cultures responded normally to ultraviolet radiation (UV) by cell cycle arrest, JNK, p38, and p53 activation, hydrogen peroxide generation, and repair of DNA photoproducts. We propose that malignant transformation of melanocytes expressing CDKN2A mutation and MC1RLOF allele(s) requires acquisition of somatic mutations facilitated by MC1R genotype or aberrant microenvironment due to CDKN2A mutation in keratinocytes and fibroblasts.


Assuntos
Predisposição Genética para Doença , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Mutação/genética , Receptor Tipo 1 de Melanocortina/genética , Raios Ultravioleta , Adolescente , Adulto , Animais , Células Cultivadas , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Dano ao DNA , Feminino , Heterozigoto , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos da radiação , Receptor Tipo 1 de Melanocortina/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Adulto Jovem , beta-Galactosidase/metabolismo
16.
Oncotarget ; 8(61): 104408-104417, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262649

RESUMO

TERT (telomerase reverse transcriptase) is the catalytic component of telomerase. TERT shows little expression in normal somatic cells but is commonly re-expressed in cancers, facilitating immortalization. Recently-discovered TERT promoter mutations create binding sites for ETS-family transcription factors to upregulate TERT. ETS1 is reported to be important for TERT upregulation in melanoma. However it is unclear when in melanoma progression TERT and ETS1 proteins are expressed. To elucidate this question, ETS1 and TERT immunohistochemistry were performed on a panel of benign (n=27) and dysplastic nevi (n=34), radial growth phase (n=29), vertical growth phase (n=25) and metastatic melanomas (n=27). Lesions were scored by percentage of positive cells. ETS1 was readily detectable in all lesions, but not in normal melanocytes. TERT was located in either the nucleolus, the nucleoplasm (non-nucleolar) or both. Non-nucleolar TERT increased in prevalence with progression, from 19% of benign nevi to 78% of metastases. It did not however correlate with cell proliferation (Ki-67 immunostaining), nor differ significantly in prevalence between primary melanomas with or without a TERT promoter mutation. These results demonstrate that ETS1 is expressed very early in melanoma progression, and interestingly only non-nucleolar TERT correlates clearly in prevalence with melanoma progression. It can be acquired at various stages and by mechanisms other than promoter mutations.

18.
PLoS Genet ; 13(8): e1006942, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806777

RESUMO

Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAßGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Marcadores Genéticos , Células HCT116 , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
19.
Nucleic Acids Res ; 45(11): 6442-6458, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431046

RESUMO

Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.


Assuntos
Diferenciação Celular , DNA Helicases/metabolismo , Melanócitos/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Expressão Gênica , Regulação da Expressão Gênica , Melaninas/biossíntese , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...