Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888761

RESUMO

Pseudopotential locality errors have hampered the applications of the diffusion Monte Carlo (DMC) method in materials containing transition metals, in particular oxides. We have developed locality error free effective core potentials, pseudo-Hamiltonians, for transition metals ranging from Cr to Zn. We have modified a procedure published by some of us in Bennett et al. [J. Chem. Theory Comput. 18, 828 (2022)]. We carefully optimized our pseudo-Hamiltonians and achieved transferability errors comparable to the best semilocal pseudopotentials used with DMC but without incurring in locality errors. Our pseudo-Hamiltonian set (named OPH23) bears the potential to significantly improve the accuracy of many-body-first-principles calculations in fundamental science research of complex materials involving transition metals.

2.
J Chem Phys ; 157(5): 054101, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933201

RESUMO

We introduce new correlation consistent effective core potentials (ccECPs) for the elements I, Te, Bi, Ag, Au, Pd, Ir, Mo, and W with 4d, 5d, 6s, and 6p valence spaces. These ccECPs are given as a sum of spin-orbit averaged relativistic effective potential (AREP) and effective spin-orbit (SO) terms. The construction involves several steps with increasing refinements from more simple to fully correlated methods. The optimizations are carried out with objective functions that include weighted many-body atomic spectra, norm-conservation criteria, and SO splittings. Transferability tests involve molecular binding curves of corresponding hydride and oxide dimers. The constructed ccECPs are systematically better and in a few cases on par with previous effective core potential (ECP) tables on all tested criteria and provide a significant increase in accuracy for valence-only calculations with these elements. Our study confirms the importance of the AREP part in determining the overall quality of the ECP even in the presence of sizable spin-orbit effects. The subsequent quantum Monte Carlo calculations point out the importance of accurate trial wave functions that, in some cases (mid-series transition elements), require treatment well beyond a single-reference.

3.
J Chem Phys ; 156(1): 014707, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998345

RESUMO

The first magnetic 2D material discovered, monolayer (ML) CrI3, is particularly fascinating due to its ground state ferromagnetism. However, because ML materials are difficult to probe experimentally, much remains unresolved about ML CrI3's structural, electronic, and magnetic properties. Here, we leverage Density Functional Theory (DFT) and high-accuracy Diffusion Monte Carlo (DMC) simulations to predict lattice parameters, magnetic moments, and spin-phonon and spin-lattice coupling of ML CrI3. We exploit a recently developed surrogate Hessian DMC line search technique to determine CrI3's ML geometry with DMC accuracy, yielding lattice parameters in good agreement with recently published STM measurements-an accomplishment given the ∼10% variability in previous DFT-derived estimates depending upon the functional. Strikingly, we find that previous DFT predictions of ML CrI3's magnetic spin moments are correct on average across a unit cell but miss critical local spatial fluctuations in the spin density revealed by more accurate DMC. DMC predicts that magnetic moments in ML CrI3 are 3.62 µB per chromium and -0.145 µB per iodine, both larger than previous DFT predictions. The large disparate moments together with the large spin-orbit coupling of CrI3's I-p orbital suggest a ligand superexchange-dominated magnetic anisotropy in ML CrI3, corroborating recent observations of magnons in its 2D limit. We also find that ML CrI3 exhibits a substantial spin-phonon coupling of ∼3.32 cm-1. Our work, thus, establishes many of ML CrI3's key properties, while also continuing to demonstrate the pivotal role that DMC can assume in the study of magnetic and other 2D materials.

4.
J Chem Theory Comput ; 18(2): 828-839, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35001633

RESUMO

Practical applications of the real-space diffusion Monte Carlo (DMC) method require the removal of core electrons, where currently localization approximations of semilocal potentials are generally used in the projector. Accurate calculations of complex solids and large molecules demand minimizing the impact of approximated atomic cores. Prior works have shown that the errors from such approximations can be sizable in both finite and periodic systems. In this work, we show that a class of differential pseudopotentials, known as pseudo-Hamiltonians, can be constructed for the 3d transition metal atoms, entirely removing the need for any localization scheme in the DMC projector. As a proof of principle, we demonstrate the approach for the case of Co. In order to minimize errors in the pseudo-Hamiltonian at the many-body level, we generalize the recently proposed correlation-consistent pseudopotential generation scheme to successively close semilocal representations of the differential potentials. Our generation scheme successfully produces potentials tailored specifically for real space projector quantum Monte Carlo methods with low error at the many-body level, i.e., with many-body scattering properties very close to relativistic all-electron results. In particular, we show that the agreement with respect to atomic and molecular quantities reach chemical accuracy in many cases─on par with the most accurate semilocal pseudopotentials available. Further, our pseudo-Hamiltonian generation scheme utilizes standard quantum chemistry codes designed only to work with semilocal pseudopotentials, enabling straightforward generation of pseudo-Hamiltonians for additional elements in future works.

5.
J Chem Phys ; 153(18): 184111, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187421

RESUMO

While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for ab initio electronic structure calculations, in practice, the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions with approximate nodes (or zeros). This approximation introduces a variational error in the energy that potentially can be tested and systematically improved. Here, we present a computational method that produces trial wavefunctions with systematically improvable nodes for DMC calculations of periodic solids. These trial wavefunctions are efficiently generated with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. A simple protocol in which both exact and approximate results for finite supercells are used to extrapolate to the thermodynamic limit is introduced. This approach is illustrated in the case of the carbon diamond using Slater-Jastrow trial wavefunctions including up to one million Slater determinants. Fixed-node DMC energies obtained with such large expansions are much improved, and the fixed-node error is found to decrease monotonically and smoothly as a function of the number of determinants in the trial wavefunction, a property opening the way to a better control of this error. The cohesive energy extrapolated to the thermodynamic limit is in close agreement with the estimated experimental value. Interestingly, this is also the case at the single-determinant level, thus, indicating a very good error cancellation in carbon diamond between the bulk and atomic total fixed-node energies when using single-determinant nodes.

6.
J Chem Phys ; 152(17): 174105, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384844

RESUMO

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy. Advances in real space methods include techniques for accurate computation of bandgaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods, including GW and density functional based techniques. To provide an improved foundation for these calculations, we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK.

7.
J Chem Theory Comput ; 16(3): 1482-1502, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32027496

RESUMO

Very recently, we introduced a set of correlation consistent effective core potentials (ccECPs) constructed within full many-body approaches. By employing significantly more accurate correlated approaches, we were able to reach a new level of accuracy for the resulting effective core Hamiltonians. We also strived for simplicity of use and easy transferability into a variety of electronic structure methods in quantum chemistry and condensed matter physics. Here, as a reference for future use, we present exact or nearly exact total energy calculations for these ccECPs. The calculations cover H-Kr elements and are based on the state-of-the-art configuration interaction (CI), coupled-cluster (CC), and quantum Monte Carlo (QMC) calculations with systematically eliminated/improved errors. In particular, we carry out full CI/CCSD(T)/CCSDT(Q) calculations with cc-pVnZ with up to n = 6 basis sets and we estimate the complete basis set limits. Using combinations of these approaches, we achieved an accuracy of ≈1-10 mHa for K-Zn atoms and ≈0.1-0.3 mHa for all other elements-within about 1% or better of the ccECP total correlation energies. We also estimate the corresponding kinetic energies within the feasible limit of full CI calculations. In order to provide data for QMC calculations, we include fixed-node diffusion Monte Carlo energies for each element that give quantitative insights into the fixed-node biases for single-reference trial wave functions. The results offer a clear benchmark for future high-accuracy calculations in a broad variety of correlated wave function methods such as CI and CC as well is in stochastic approaches such as real space sampling QMC.

8.
J Chem Phys ; 151(14): 144110, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615226

RESUMO

Recently, we developed a new method for generating effective core potentials (ECPs) using valence energy isospectrality with explicitly correlated all-electron (AE) excitations and norm-conservation criteria. We apply this methodology to the 3rd-row main group elements, creating new correlation consistent ECPs (ccECPs) and also deriving additional ECPs to complete the ccECP table for H-Kr. For K and Ca, we develop Ne-core ECPs, and for the 4p main group elements, we construct [Ar]3d10-core potentials. Scalar relativistic effects are included in their construction. Our ccECPs reproduce AE spectra with significantly better accuracy than many existing pseudopotentials and show better overall consistency across multiple properties. The transferability of ccECPs is tested on monohydride and monoxide molecules over a range of molecular geometries. For the constructed ccECPs, we also provide optimized DZ-6Z valence Gaussian basis sets.

9.
J Chem Phys ; 149(10): 104108, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30219005

RESUMO

Very recently, we have introduced correlation consistent effective core potentials (ccECPs) derived from many-body approaches with the main target being their use in explicitly correlated methods, while still usable in mainstream approaches. The ccECPs are based on reproducing excitation energies for a subset of valence states, namely, achieving near-isospectrality between the original and pseudo Hamiltonians. In addition, binding curves of dimer molecules were used for refinement and overall improvement of transferability over a range of bond lengths. Here we apply similar ideas to the 2nd row elements and study several aspects of the constructions in order to find the high accuracy solutions within the chosen ccECP forms with 3s, 3p valence space (Ne-core). Our new constructions exhibit accurate low-lying atomic excitations and equilibrium molecular bonds (on average within ≈0.03 eV and 3 mÅ); however, the errors for Al and Si oxide molecules at short bond lengths are notably larger for both ours and existing effective core potentials. Assuming this limitation, our ccECPs show a systematic balance between the criteria of atomic spectra accuracy and transferability for molecular bonds. In order to provide another option with much higher uniform accuracy, we also construct He-core ccECPs for the whole 2nd row with typical discrepancies of ≈0.01 eV or smaller.

10.
J Phys Condens Matter ; 30(19): 195901, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29582782

RESUMO

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

11.
J Chem Phys ; 147(22): 224106, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246065

RESUMO

We outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtain higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.

12.
J Chem Phys ; 144(24): 244113, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369503

RESUMO

We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo, we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn2 molecules, as well as the electron affinities of the 6p row elements in close agreement with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...