Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414566

RESUMO

Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.

2.
J R Soc Interface ; 21(211): 20230555, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38412961

RESUMO

Artificial light at night (ALAN), from streetlights and other sources, has a wide variety of impacts on the natural environment. A significant challenge remains, however, to predict at intermediate spatial extents (e.g. across a city) the ALAN that organisms experience under different lighting regimes. Here we use Monte Carlo radiative Transfer to model the three-dimensional lighting environment at, and just above, ground level, on the spatial scales at which animals and humans experience it. We show how this technique can be used to model a suite of both real and hypothetical lighting environments, mimicking the transition of public infrastructure between different lighting technologies. We then demonstrate how the behaviour of animals experiencing these simulated lighting environments can be emulated to probe the availability of darkness, and dark corridors, within them. Our simulations show that no single lighting technology provides an unmitigated alleviation of negative impacts within urban environments, and that holistic treatments of entire lighting environments should be employed when understanding how animals use and traverse them.


Assuntos
Luz , Iluminação , Animais , Humanos , Escuridão , Meio Ambiente , Cidades
3.
Ecol Evol ; 14(1): e10842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235407

RESUMO

Since the classic work of E.B. Ford, explanations for eyespot variation in the Meadow Brown butterfly have focused on the role of genetic polymorphism. The potential role of thermal plasticity in this classic example of natural selection has therefore been overlooked. Here, we use large daily field collections of butterflies from three sites, over multiple years, to examine whether field temperature is correlated with eyespot variation, using the same presence/absence scoring as Ford. We show that higher developmental temperature in the field leads to the disappearance of the spots visible while the butterfly is at rest, explaining the historical observation that hindwing spotting declines across the season. Strikingly, females developing at 11°C have a median of six spots and those developing at 15°C only have three. In contrast, the large forewing eyespot is always present and scales with forewing length. Furthermore, in contrast to the smaller spots, the size of the large forewing spot is best explained by calendar date (days since 1st March) rather than the temperature at pupation. As this large forewing spot is involved in startling predators and/or sexual selection, its constant presence is therefore likely required for defence, whereas the disappearance of the smaller spots over the season may help with female crypsis. We model annual total spot variation with phenological data from the UK and derive predictions as to how spot patterns will continue to change, predicting that female spotting will decrease year on year as our climate warms.

4.
Oecologia ; 202(4): 641-653, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37543993

RESUMO

The hazel dormouse is predominantly an arboreal species that moves down to the ground to hibernate in the autumn in temperate parts of its distributional ranges at locations not yet well understood. The main objective of this study is to test whether environmental characteristics surrounding hazel dormouse hibernacula can be identified using high-resolution remote sensing and data collected in situ. To achieve this, remotely sensed variables, including canopy height and cover, topographic slope, sky view, solar radiation and cold air drainage, were modelled around 83 dormouse hibernacula in England (n = 62) and the Netherlands (n = 21), and environmental characteristics that may be favoured by pre-hibernating dormice were identified. Data on leaf litter depth, temperature, canopy cover and distance to the nearest tree were collected in situ and analysed at hibernaculum locations in England. The findings indicated that remotely sensed data were effective in identifying attributes surrounding the locations of dormouse hibernacula and when compared to in situ information, provided more conclusive results. This study suggests that remotely sensed topographic slope, canopy height and sky view have an influence on hazel dormice choosing suitable locations to hibernate; whilst in situ data suggested that average daily mean temperature at the hibernaculum may also have an effect. Remote sensing proved capable of identifying localised environmental characteristics in the wider landscape that may be important for hibernating dormice. This study proposes that this method can provide a novel progression from habitat modelling to conservation management for the hazel dormouse, as well as other species using habitats where topography and vegetation structure influence fine-resolution favourability.


Assuntos
Myoxidae , Animais , Ecossistema , Árvores , Temperatura , Inglaterra
5.
Sci Adv ; 8(37): eabl6891, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103525

RESUMO

The nighttime environment of much of Earth is being changed rapidly by the introduction of artificial lighting. While data on spatial and temporal variation in the intensity of artificial lighting have been available at a regional and global scale, data on variation in its spectral composition have only been collected for a few locations, preventing variation in associated environmental and human health risks from being mapped. Here, we use imagery obtained using digital cameras by astronauts on the International Space Station to map variation in the spectral composition of lighting across Europe for 2012-2013 and 2014-2020. These show a regionally widespread spectral shift, from that associated principally with high-pressure sodium lighting to that associated with broad white light-emitting diodes and with greater blue emissions. Reexpressing the color maps in terms of spectral indicators of environmental pressures, we find that this trend is widely increasing the risk of harmful effects to ecosystems.

6.
Ecol Evol ; 12(8): e9157, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949540

RESUMO

The introduction of artificial nighttime lighting due to human settlements and transport networks is increasingly altering the timing, intensity, and spectra of natural light regimes worldwide. Much of the research on the impacts of nighttime light pollution on organisms has focused on animal species. Little is known about the impacts of daylength extension due to outdoor lighting technologies on wild plant communities, despite the fact that plant growth and development are under photoperiodic control. In a five-year field experiment, artificial ecosystems ("mesocosms") of grassland communities both alone or in combination with invertebrate herbivores and predators were exposed to light treatments that simulated street lighting technologies (low-pressure sodium, and light-emitting diode [LED]-based white lighting), at ground-level illuminance. Most of the plant species in the mesocosms did not exhibit changes in biomass accumulation after 5 years of exposure to the light treatments. However, the white LED treatment had a significant negative effect on biomass production in the herbaceous species Lotus pedunculatus. Likewise, the interaction between the white LED treatment and the presence of herbivores significantly reduced the mean shoot/root ratio of the grass species Holcus lanatus. Artificial nighttime lighting had no effect on the foliar carbon or nitrogen in most of the grassland species. Nevertheless, the white LED treatment significantly increased the leaf nitrogen content in Lotus corniculatus in the presence of herbivores. Long-term exposure to artificial light at night had no general effects on plant biomass responses in experimental grassland communities. However, species-specific and negative effects of cool white LED lighting at ground-level illuminance on biomass production and allocation in mixed plant communities are suggested by our findings. Further studies on the impacts of light pollution on biomass accumulation in plant communities are required as these effects could be mediated by different factors, including herbivory, competition, and soil nutrient availability.

7.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866301

RESUMO

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Florestas , Plantas
8.
Biol Rev Camb Philos Soc ; 97(1): 343-360, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34609062

RESUMO

Remote sensing has revolutionised many aspects of ecological research, enabling spatiotemporal data to be collected in an efficient and highly automated manner. The last two decades have seen phenomenal growth in capabilities for high-resolution remote sensing that increasingly offers opportunities to study small, but ecologically important organisms, such as insects. Here we review current applications for using remote sensing within entomological research, highlighting the emerging opportunities that now arise through advances in spatial, temporal and spectral resolution. Remote sensing can be used to map environmental variables, such as habitat, microclimate and light pollution, capturing data on topography, vegetation structure and composition, and luminosity at spatial scales appropriate to insects. Such data can also be used to detect insects indirectly from the influences that they have on the environment, such as feeding damage or nest structures, whilst opportunities for directly detecting insects are also increasingly available. Entomological radar and light detection and ranging (LiDAR), for example, are transforming our understanding of aerial insect abundance and movement ecology, whilst ultra-high spatial resolution drone imagery presents tantalising new opportunities for direct observation. Remote sensing is rapidly developing into a powerful toolkit for entomologists, that we envisage will soon become an integral part of insect science.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Animais , Insetos
9.
Nat Commun ; 12(1): 4163, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230463

RESUMO

The nighttime environment is being altered rapidly over large areas worldwide through introduction of artificial lighting, from streetlights and other sources. This is predicted to impact the visual ecology of many organisms, affecting both their intra- and interspecific interactions. Here, we show the effects of different artificial light sources on multiple aspects of hawkmoth visual ecology, including their perception of floral signals for pollination, the potential for intraspecific sexual signalling, and the effectiveness of their visual defences against avian predators. Light sources fall into three broad categories: some that prevent use of chromatic signals for these behaviours, others that more closely mimic natural lighting conditions, and, finally, types whose effects vary with light intensity and signal colour. We find that Phosphor Converted (PC) amber LED lighting - often suggested to be less harmful to nocturnal insects - falls into this third disruptive group, with unpredictable consequences for insect visual ecology depending on distance from the light source and the colour of the objects viewed. The diversity of impacts of artificial lighting on hawkmoth visual ecology alone argues for a nuanced approach to outdoor lighting in environmentally sensitive areas, employing intensities and spectra designed to limit those effects of most significant concern.


Assuntos
Ecologia , Flores , Iluminação , Polinização , Animais , Aves , Comportamento Alimentar , Insetos , Luz , Manduca
10.
Integr Comp Biol ; 61(3): 1098-1110, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34169964

RESUMO

Artificial light at night (ALAN) and its associated biological impacts have regularly been characterized as predominantly urban issues. Although far from trivial, this would imply that these impacts only affect ecosystems that are already heavily modified by humans and are relatively limited in their spatial extent, at least as compared with some key anthropogenic pressures on the environment that attract much more scientific and public attention, such as climate change or plastic pollution. However, there are a number of reasons to believe that ALAN and its impacts are more pervasive, and therefore need to be viewed from a broader geographic perspective rather than an essentially urban one. Here we address, in turn, 11 key issues when considering the degree of spatial pervasiveness of the biological impacts of ALAN. First, the global extent of ALAN is likely itself commonly underestimated, as a consequence of limitations of available remote sensing data sources and how these are processed. Second and third, more isolated (rural) and mobile (e.g., vehicle headlight) sources of ALAN may have both very widespread and important biological influences. Fourth and fifth, the occurrence and impacts of ALAN in marine systems and other remote settings, need much greater consideration. Sixth, seventh, and eighth, there is growing evidence for important biological impacts of ALAN at low light levels, from skyglow, and over long distances (because of the altitudes from which it may be viewed by some organisms), all of which would increase the areas over which impacts are occurring. Ninth and tenth, ALAN may exert indirect biological effects that may further expand these areas, because it has a landscape ecology (modifying movement and dispersal and so hence with effects beyond the direct extent of ALAN), and because ALAN interacts with other anthropogenic pressures on the environment. Finally, ALAN is not stable, but increasing rapidly in global extent, and shifting toward wavelengths of light that often have greater biological impacts.


Assuntos
Ecossistema , Poluição Ambiental , Luz , Animais
11.
Glob Chang Biol ; 26(12): 6657-6666, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956542

RESUMO

Many analyses of biological responses to climate rely on gridded climate data derived from weather stations, which differ from the conditions experienced by organisms in at least two respects. First, the microclimate recorded by a weather station is often quite different to that near the ground surface, where many organisms live. Second, the temporal and spatial resolutions of gridded climate datasets derived from weather stations are often too coarse to capture the conditions experienced by organisms. Temporally and spatially coarse data have clear benefits in terms of reduced model size and complexity, but here we argue that coarse-grained data introduce errors that, in biological studies, are too often ignored. However, in contrast to common perception, these errors are not necessarily caused directly by a spatial mismatch between the size of organisms and the scale at which climate data are collected. Rather, errors and biases are primarily due to (a) systematic discrepancies between the climate used in analysis and that experienced by organisms under study; and (b) the non-linearity of most biological responses in combination with differences in climate variance between locations and time periods for which models are fitted and those for which projections are made. We discuss when exactly problems of scale can be expected to arise and highlight the potential to circumvent these by spatially and temporally down-scaling climate. We also suggest ways in which adjustments to deal with issues of scale could be made without the need to run high-resolution models over wide extents.


Assuntos
Mudança Climática , Clima , Previsões , Microclima , Tempo (Meteorologia)
12.
Ecol Appl ; 29(8): e01989, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31376197

RESUMO

Species-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience). We explore the application of this framework to guide the conservation of a group of threatened bird species endemic to papyrus (Cyperus papyrus) swamps in East and Central Africa. Using occupancy data for five species collected over two years from a network of wetlands in Uganda, we determine the local and landscape factors that influence local extinction and colonization, and map expected rates of population turnover across the network to draw inferences about the locations that contribute most to regional resistance and resilience for all species combined. Slight variation in the factors driving extinction and colonization between individual papyrus birds led to species-specific differences in the spatial patterns of site-level resistance and resilience. However, despite this, locations with the highest resistance and/or resilience overlapped for most species and reveal where resources could be invested for multispecies persistence. This novel simplified framework can aid decision making associated with conservation planning and prioritization for multiple species residing in overlapping, fragmented habitats; helping to identify key sites that warrant urgent conservation protection, with consideration of the need to adapt and respond to future change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Aves , Mudança Climática , Extinção Biológica , Áreas Alagadas
13.
Sci Rep ; 8(1): 4347, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531261

RESUMO

Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.


Assuntos
Cactaceae/fisiologia , Escuridão , Espécies em Perigo de Extinção/estatística & dados numéricos , Poluição Ambiental , Bases de Dados Factuais , Ecossistema
14.
PLoS One ; 13(2): e0191021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29401494

RESUMO

Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species' geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies.


Assuntos
Mudança Climática , Plantas , Biodiversidade , Mudança Climática/história , Inglaterra , História do Século XIX , História do Século XX , História do Século XXI , Dispersão Vegetal , Especificidade da Espécie
15.
Sci Adv ; 3(11): e1701528, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29181445

RESUMO

A central aim of the "lighting revolution" (the transition to solid-state lighting technology) is decreased energy consumption. This could be undermined by a rebound effect of increased use in response to lowered cost of light. We use the first-ever calibrated satellite radiometer designed for night lights to show that from 2012 to 2016, Earth's artificially lit outdoor area grew by 2.2% per year, with a total radiance growth of 1.8% per year. Continuously lit areas brightened at a rate of 2.2% per year. Large differences in national growth rates were observed, with lighting remaining stable or decreasing in only a few countries. These data are not consistent with global scale energy reductions but rather indicate increased light pollution, with corresponding negative consequences for flora, fauna, and human well-being.

16.
Glob Chang Biol ; 23(7): 2641-2648, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28139040

RESUMO

White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.


Assuntos
Ecossistema , Pradaria , Iluminação , Animais , Besouros , Humanos , Luz , Dinâmica Populacional , Aranhas
17.
Glob Chang Biol ; 23(1): 256-268, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151406

RESUMO

The existence of fine-grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed 'microrefugia'. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine-grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977-2014. We show that rates of warming vary across a landscape primarily due to long-term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north-east-facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost-free season varied from +11 to -54 days and the increase in annual growing degree-days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west-facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain consistent under future climate change.


Assuntos
Mudança Climática , Microclima , Altitude , Clima , Temperatura , Reino Unido
18.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358370

RESUMO

The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban 'heat-island' effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.


Assuntos
Iluminação , Estações do Ano , Árvores/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Reino Unido
19.
Sci Rep ; 5: 15232, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472251

RESUMO

Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.


Assuntos
Afídeos/efeitos da radiação , Interações Hospedeiro-Parasita , Luz , Dinâmica Populacional , Animais , Afídeos/fisiologia , Biodiversidade , Biomassa , Ecossistema , Phaseolus/metabolismo , Phaseolus/parasitologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...