Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
J Clin Monit Comput ; 38(3): 679-690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557919

RESUMO

This study aims to resolve the unmet need for ventilator surge capacity by developing a prototype device that can alter patient-specific flow in a shared ventilator setup. The device is designed to deliver a predictable tidal volume (VT), requiring minimal additional monitoring and workload. The prototyped device was tested in an in vitro bench setup for its performance against the intended use and design criteria. The ventilation parameters: VT and airway pressures, and ventilation profiles: pressure, flow and volume were measured for different ventilator and device settings for a healthy and ARDS simulated lung pathology. We obtained VTs with a linear correlation with valve openings from 10 to 100% across set inspiratory pressures (IPs) of 20 to 30 cmH2O. Airway pressure varied with valve opening and lung elastance but did not exceed set IPs. Performance was consistent in both healthy and ARDS-simulated lung conditions. The ventilation profile diverged from traditional pressure-controlled profiles. We present the design a flow modulator to titrate VTs in a shared ventilator setup. Application of the flow modulator resulted in a characteristic flow profile that differs from pressure- or volume controlled ventilation. The development of the flow modulator enables further validation of the Individualized Shared Ventilation (ISV) technology with individualization of delivered VTs and the development of a clinical protocol facilitating its clinical use during a ventilator surge capacity problem.


Assuntos
Desenho de Equipamento , Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Volume de Ventilação Pulmonar , Ventiladores Mecânicos , Humanos , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Pulmão/fisiopatologia , Pressão
2.
Front Bioeng Biotechnol ; 12: 1275709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633664

RESUMO

Large bone defect regeneration remains a major challenge for orthopedic surgeons. Tissue engineering approaches are therefore emerging in order to overcome this limitation. However, these processes can alter some of essential native tissue properties such as intermolecular crosslinks of collagen triple helices, which are known for their essential role in tissue structure and function. We assessed the persistence of extracellular matrix (ECM) properties in human fascia lata (HFL) and periosteum (HP) after tissue engineering processes such as decellularization and sterilization. Harvested from cadaveric donors (N = 3), samples from each HFL and HP were decellularized following five different chemical protocols with and without detergents (D1-D4 and D5, respectively). D1 to D4 consisted of different combinations of Triton, Sodium dodecyl sulfate and Deoxyribonuclease, while D5 is routinely used in the institutional tissue bank. Decellularized HFL tissues were further gamma-irradiated (minimum 25 kGy) in order to study the impact of sterilization on the ECM. Polarized light microscopy (PLM) was used to estimate the thickness and density of collagen fibers. Tissue hydration and content of hydroxyproline, enzymatic crosslinks, and non-enzymatic crosslinks (pentosidine) were semi-quantified with Raman spectroscopy. ELISA was also used to analyze the maintenance of the decorin (DCN), an important small leucine rich proteoglycan for fibrillogenesis. Among the decellularization protocols, detergent-free treatments tended to further disorganize HFL samples, as more thin fibers (+53.7%) and less thick ones (-32.6%) were recorded, as well as less collagen enzymatic crosslinks (-25.2%, p = 0.19) and a significant decrease of DCN (p = 0.036). GAG content was significantly reduced in both tissue types after all decellularization protocols. On the other hand, HP samples were more sensitive to the D1 detergent-based treatments, with more disrupted collagen organization and greater, though not significant loss of enzymatic crosslinks (-37.4%, p = 0.137). Irradiation of D5 HFL samples, led to a further and significant loss in the content of enzymatic crosslinks (-29.4%, p = 0.037) than what was observed with the decellularization process. Overall, the results suggest that the decellularization processes did not significantly alter the matrix. However, the addition of a gamma-irradiation is deleterious to the collagen structural integrity of the tissue.

3.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451093

RESUMO

Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.


Assuntos
Fator de Transcrição CDX2 , Dosagem de Genes , Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Fator de Transcrição CDX2/genética , Diferenciação Celular/genética , Embrião de Mamíferos , Mesoderma
4.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328098

RESUMO

Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.

5.
J Acoust Soc Am ; 155(2): 1021-1035, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341738

RESUMO

Acoustic events exceeding a certain threshold of intensity cannot benefit from a linearization of the governing wave equation, posing an additional burden on the numerical modelling. Weak shock theory associates nonlinearity with the generation of high frequency harmonics that compensate for atmospheric attenuation. Overlooking the persistence of this phenomenon at large distances can lead to mispredictions in gun detection procedures, noise abatement protocols, and auditory risk assessment. The state-of-the-art mostly addresses aircraft jet noise, a stationary and largely random type of signal. The extension of such conclusions to muzzle blasts requires caution in considering their peculiar impulsive and broadband nature. A methodology based on the time and frequency analysis of an experimental dataset of eight calibres intends to find quantitative metrics linked to acoustic nonlinearity in outdoor muzzle blast propagation. Propagating three waveforms (SCAR-L 7.62 mm, Browning 9 mm, and Howitzer 105 mm) up to 300 [m] with the in-house numerical solver based on the nonlinear progressive wave equation, demonstrates that the propagation does not downgrade to truly linear.

6.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38370632

RESUMO

Failure of septation of the interventricular septum (IVS) is the most common congenital heart defect (CHD), but mechanisms for patterning the IVS are largely unknown. We show that a Tbx5+/Mef2cAHF+ progenitor lineage forms a compartment boundary bisecting the IVS. This coordinated population originates at a first- and second heart field interface, subsequently forming a morphogenetic nexus. Ablation of Tbx5+/Mef2cAHF+ progenitors cause IVS disorganization, right ventricular hypoplasia and mixing of IVS lineages. Reduced dosage of the CHD transcription factor TBX5 disrupts boundary position and integrity, resulting in ventricular septation defects (VSDs) and patterning defects, including Slit2 and Ntn1 misexpression. Reducing NTN1 dosage partly rescues cardiac defects in Tbx5 mutant embryos. Loss of Slit2 or Ntn1 causes VSDs and perturbed septal lineage distributions. Thus, we identify essential cues that direct progenitors to pattern a compartment boundary for proper cardiac septation, revealing new mechanisms for cardiac birth defects.

7.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411343

RESUMO

In the nascent mesoderm, TBXT expression must be precisely regulated to ensure that cells exit the primitive streak and pattern the anterior-posterior axis, but how varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dosage reduction during early human gastrulation using human induced pluripotent stem cell models of gastrulation and mesoderm differentiation. Multi-omic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprising wild-type, TBXT heterozygous or TBXT null human induced pluripotent stem cells reveal that varying TBXT dosage does not compromise the ability of a cell to differentiate into nascent mesoderm, but instead directly influences the temporal progression of the epithelial-to-mesenchymal transition with wild type transitioning first, followed by TBXT heterozygous and then TBXT null. By differentiating cells into nascent mesoderm in a monolayer format, we further illustrate that TBXT dosage directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that epithelial-to-mesenchymal transition progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Mesoderma/metabolismo , Gástrula/metabolismo , Gastrulação/genética , Diferenciação Celular/genética
8.
Emotion ; 24(3): 687-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37747497

RESUMO

Emotions play a fundamental role in human interactions and trigger responses in physiological, psychological, and behavioral modalities. Interpersonal coordination often entails attunement between individuals in various modalities. Previous research has elucidated the mechanisms of interpersonal synchronization and the emotions aroused by joint action: cardiac activity aligns in disputing marital couples, spectators share enjoyment in observing live dance performances, and joint finger-tapping evokes positive emotions. However, little is known about the impact of emotions on intentional interpersonal synchronization. To address this problem, we conducted an experiment in 2022 asking 60 participants to engage in a three-way finger-tapping synchronization task. We systematically induced emotional states (positive, neutral, and negative) with social comparison feedback using success-failure manipulations. An analysis of behavior synchronization using the Kuramoto order parameter revealed that negative emotion induction significantly diminished time spent in synchrony compared to positive induction. Moreover, the results exposed incremental struggles in attaining higher levels of synchronization (Q2-Q3) after the induction of negative emotions. These outcomes further substantiate the necessity of integrating the indices of agents' emotions into interpersonal synchronization and coordination models. We discuss the implications of this work for research on interpersonal emotion in joint action and applied outcomes in emotion-aware technologies and interventions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Emoções , Felicidade , Humanos , Emoções/fisiologia , Prazer , Conscientização , Relações Interpessoais
9.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986746

RESUMO

In the nascent mesoderm, levels of Brachyury (TBXT) expression must be precisely regulated to ensure cells exit the primitive streak and pattern the anterior-posterior axis, but how this varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dose reduction during early human gastrulation using human induced pluripotent stem cell (hiPSC)-based models of gastrulation and mesoderm differentiation. Multiomic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprised of WT, TBXT heterozygous (TBXT-Het), or TBXT null (TBXT-KO) hiPSCs reveal that varying TBXT dosage does not compromise a cell's ability to differentiate into nascent mesoderm, but that the loss of TBXT significantly delays the temporal progression of the epithelial to mesenchymal transition (EMT). This delay is dependent on TBXT dose, as cells heterozygous for TBXT proceed with EMT at an intermediate pace relative to WT or TBXT-KO. By differentiating iPSCs of the allelic series into nascent mesoderm in a monolayer format, we further illustrate that TBXT dose directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that EMT progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.

10.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37419111

RESUMO

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Assuntos
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
11.
Sci Rep ; 13(1): 7094, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127737

RESUMO

The ability to synchronise with other people is a core socio-motor competence acquired during human development. In this study we aimed to understand the impact of individual emotional arousal on joint action performance. We asked 15 mixed-gender groups (of 4 individuals each) to participate in a digital, four-way movement synchronisation task. Participants shared the same physical space, but could not see each other during the task. In each trial run, every participant was induced with an emotion-laden acoustic stimulus (pre-selected from the second version of International Affective Digitized Sounds). Our data demonstrated that the human ability to synchronise is overall robust to fluctuations in individual emotional arousal, but performance varies in quality and movement speed as a result of valence of emotional induction (both on the individual and group level). We found that three negative inductions per group per trial led to a drop in overall group synchronisation performance (measured as the median and standard deviation of Kuramoto's order parameter-an index measuring the strength of synchrony between oscillators, in this study, players) in the 15 sec post-induction. We report that negatively-valenced inductions led to slower oscillations, whilst positive induction afforded faster oscillations. On the individual level of synchronisation performance we found an effect of empathetic disposition (higher competence linked to better performance during the negative induction condition) and of participant's sex (males displayed better synchronisation performance with others). We believe this work is a blueprint for exploring the frontiers of inextricably bound worlds of emotion and joint action, be it physical or digital.


Assuntos
Emoções , Som , Humanos , Masculino , Estimulação Acústica , Acústica , Nível de Alerta
12.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36994838

RESUMO

Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood owing, in part, to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single-cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently expressed mesodermal transcription factor, is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mislocalized, prompting us to investigate the scope of the role of Mesp1 in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and crucial cardiac transcription factors, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single-cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Epigenômica , Miócitos Cardíacos , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo
13.
Cell ; 186(3): 479-496.e23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736300

RESUMO

Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.


Assuntos
Coração , Mesoderma , Camundongos , Animais , Diferenciação Celular , Morfogênese , Embrião de Mamíferos , Mamíferos
14.
Nat Commun ; 14(1): 292, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653361

RESUMO

Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Epigênese Genética , Neoplasias Pancreáticas
15.
Front Hum Neurosci ; 16: 944241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111209

RESUMO

Emotions are a natural vector for acting together with others and are witnessed in human behaviour, perception and body functions. For this reason, studies of human-to-human interaction, such as multi-person motor synchronisation, are a perfect setting to disentangle the linkage of emotion with socio-motor interaction. And yet, the majority of joint action studies aiming at understanding the impact of emotions on multi-person performance resort to enacted emotions, the ones that are emulated based on the previous experience of such emotions, and almost exclusively focus on dyadic interaction. In addition, tasks chosen to study emotion in joint action are frequently characterised by a reduced number of physical dimensions to gain experimental control and subsequent facilitation in data analysis. Therefore, it is not clear how naturalistically induced emotions diffuse in more ecological interactions with other people and how emotions affect the process of interpersonal synchronisation. Here, we show that positive and negative emotions differently alter spontaneous human synchronous behaviour during a multi-person improvisation task. The study involved 39 participants organised in triads who self-reported liking improvisational activities (e.g., dancing). The task involved producing improvisational movements with the right hand. Participants were emotionally induced by manipulated social feedback involving a personal ranking score. Three-dimensional spatio-temporal data and cardiac activity were extracted and transformed into oscillatory signals (phases) to compute behavioural and physiological synchrony. Our results demonstrate that individuals induced with positive emotions, as opposed to negative emotions or a neutral state, maintained behavioural synchrony with other group members for a longer period of time. These findings contribute to the emerging shift of neuroscience of emotion and affective sciences towards the environment  of social significance where emotions appear the most-in interaction with others. Our study showcases a method of quantification of synchrony in an improvisational and interactive task based on a well-established Kuramoto model.

16.
Bioinform Adv ; 2(1): vbac051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967929

RESUMO

Motivation: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter but then only report one. Results: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation of gene expression, co-expression, biological processes and cluster integrity across clustering resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking molecular data and cluster evaluation metrics, providing novel insight into cell populations. Availability and implementation: https://github.com/apblair/CellLayers.

17.
Circulation ; 146(10): 770-787, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35938400

RESUMO

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Assuntos
Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Processamento Alternativo , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , RNA/genética , RNA/metabolismo
18.
Front Bioeng Biotechnol ; 10: 919646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813998

RESUMO

The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.

19.
Nat Commun ; 13(1): 4345, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896549

RESUMO

Heart failure with reduced ejection fraction (HFrEF) is associated with high mortality, highlighting an urgent need for new therapeutic strategies. As stress-activated cardiac signaling cascades converge on the nucleus to drive maladaptive gene programs, interdicting pathological transcription is a conceptually attractive approach for HFrEF therapy. Here, we demonstrate that CDK7/12/13 are critical regulators of transcription activation in the heart that can be pharmacologically inhibited to improve HFrEF. CDK7/12/13 inhibition using the first-in-class inhibitor THZ1 or RNAi blocks stress-induced transcription and pathologic hypertrophy in cultured rodent cardiomyocytes. THZ1 potently attenuates adverse cardiac remodeling and HFrEF pathogenesis in mice and blocks cardinal features of disease in human iPSC-derived cardiomyocytes. THZ1 suppresses Pol II enrichment at stress-transactivated cardiac genes and inhibits a specific pathologic gene program in the failing mouse heart. These data identify CDK7/12/13 as druggable regulators of cardiac gene transactivation during disease-related stress, suggesting that HFrEF features a critical dependency on transcription that can be therapeutically exploited.


Assuntos
Quinases Ciclina-Dependentes , Insuficiência Cardíaca , Animais , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , Camundongos , RNA Polimerase II , Volume Sistólico
20.
Genes Dev ; 36(11-12): 652-663, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835508

RESUMO

Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.


Assuntos
Cardiopatias Congênitas , Organoides , Animais , Modelos Animais de Doenças , Coração , Cardiopatias Congênitas/genética , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...