Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38928581

RESUMO

Ageing is a continuous process that can cause neurodevelopmental changes in the body. Several studies have examined its effects, but few have focused on how time affects biological processes in the early stages of brain development. As studying the changes that occur in the early stages of life is important to prevent age-related neurological and psychiatric disorders, we aim to focus on these changes. The transcriptomic markers of ageing that are common to the analysed brain regions of C57Bl/6J mice were identified after conducting two-way ANOVA tests and effect size analysis on the time courses of gene expression profiles in various mouse brain regions. A total of 16,374 genes (59.9%) significantly changed their expression level, among which 7600 (27.8%) demonstrated tissue-dependent differences only, and 1823 (6.7%) displayed time-dependent and tissue-independent responses. Focusing on genes with at least a large effect size gives the list of potential biomarkers 12,332 (45.1%) and 1670 (6.1%) genes, respectively. There were 305 genes that exhibited similar significant time response trends (independently of the brain region). Samples from an 11-day-old mouse embryo validated the identified early-stage brain ageing markers. The overall functional analysis revealed tRNA and rRNA processing in the mitochondrion and contact activation system (CAS), as well as the kallikrein/kinin system (KKS), together with clotting cascade and defective factor F9 activation being affected by ageing. Most ageing-related pathways were significantly enriched, especially those that are strongly connected to development processes and neurodegenerative diseases.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38582233

RESUMO

PURPOSE: Childhood cancer survivors, in particular those treated with radiation therapy, are at high risk of long-term iatrogenic events. The prediction of risk of such events is mainly based on the knowledge of the radiation dose received to healthy organs and tissues during treatment of childhood cancer diagnosed decades ago. We aimed to set up a standardized organ dose table to help former patients and clinicians in charge of long-term follow-up clinics. METHODS AND MATERIALS: We performed whole body dosimetric reconstruction for 2646 patients from 12 European countries treated between 1941 and 2006 (median, 1976). Most plannings were 2- or 3-dimensional. A total of 46% of patients were treated using Cobalt 60, and 41%, using a linear accelerator. The median prescribed dose was 27.2 Gy (IQ1-IQ3, 17.6-40.0 Gy). A patient-specific voxel-based anthropomorphic phantom with more than 200 anatomic structures or substructures delineated as a surrogate of each subject's anatomy was used. The radiation therapy was simulated with a treatment planning system based on available treatment information. The radiation dose received by any organ of the body was estimated by extending the treatment planning system dose calculation to the whole body, by type and localization of childhood cancer. RESULTS: The integral dose and normal tissue doses to most of the 23 considered organs increased between the 1950s and 1970s and decreased or plateaued thereafter. Whatever the organ considered, the type of childhood cancer explained most of the variability in organ dose. The country of treatment explained only a small part of the variability. CONCLUSIONS: The detailed dose estimates provide very useful information for former patients or clinicians who have only limited knowledge about radiation therapy protocols or techniques, but who know the type and site of childhood cancer, sex, age, and year of treatment. This will allow better prediction of the long-term risk of iatrogenic events and better referral to long-term follow-up clinics.

3.
Int J Radiat Biol ; : 1-12, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079348

RESUMO

PURPOSE: It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may interfere with the normal intrauterine development, on the other hand, radiation may induce leukemia and cancer which become manifest in childhood. A large amount of epidemiological and experimental data has recently been presented which might be used to improve our understanding of underlying mechanisms and setting radiation protection standards. Yet, ecological studies in the populations exposed to increased levels of radiation in regions contaminated by radioactivity released from reactor accidents (Chernobyl, Fukushima) do not provide solid evidence which would contribute to this aim. On the other hand, well designed experimental studies demonstrated the multifactorial mechanisms which lead to different health effects after radiation exposure in utero. CONCLUSION: There is no convincing evidence, neither from epidemiological nor experimental data of the existence of a dose threshold for developmental defects after radiation exposure in utero. This must be taken into account in the revision of rules and regulations of radiation protection in medicine.

5.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497269

RESUMO

Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.

6.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555856

RESUMO

Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients. Rats received fractionated whole heart X-irradiation (0, 0.92, 6.9 and 27.6 Gy total doses) and blood was collected after 1.5, 3, 7 and 12 months. Global and gene-specific methylation of the samples were evaluated; and gene expression of selected differentially methylated regions (DMRs) was validated in rat and BC patient blood. In rats receiving an absorbed dose of 27.6 Gy, DNA methylation alterations were detected up to 7 months with differential expression of cardiac-relevant DMRs. Of those, SLMAP showed increased expression at 1.5 months, which correlated with hypomethylation. Furthermore, E2F6 inversely correlated with a decreased global longitudinal strain. In BC patients, E2F6 and SLMAP exhibited differential expression directly and 6 months after radiotherapy, respectively. This study describes a systemic radiation fingerprint at the DNA methylation level, elucidating a possible association of DNA methylation to RICVD pathophysiology, to be validated in future mechanistic studies.


Assuntos
Metilação de DNA , Coração , Animais , Ratos , Coração/efeitos da radiação , Pulmão , Proteínas de Membrana , Mutação , Processamento de Proteína Pós-Traducional , Neoplasias da Mama/radioterapia , Humanos , Feminino
7.
PLoS One ; 17(3): e0265281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286349

RESUMO

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Assuntos
Senescência Celular , Biologia de Sistemas , Células Cultivadas , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Radiobiologia
8.
Epigenetics ; 17(1): 59-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522387

RESUMO

Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Doenças Cardiovasculares/genética , Epigênese Genética , Humanos , Recidiva Local de Neoplasia/genética , Radiação Ionizante
9.
Environ Int ; 147: 106295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341586

RESUMO

The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.


Assuntos
Exposição à Radiação , Lesões por Radiação , Animais , Biomarcadores , Cognição , Humanos , Exposição à Radiação/efeitos adversos , Lesões por Radiação/epidemiologia , Radiação Ionizante
10.
Front Behav Neurosci ; 14: 609660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488367

RESUMO

Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.

11.
Reprod Toxicol ; 91: 59-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705956

RESUMO

Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.


Assuntos
Melaninas/metabolismo , Lesões Experimentais por Radiação/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Raios X/efeitos adversos , Animais , Desenvolvimento Embrionário/efeitos da radiação , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos da radiação , Lesões Experimentais por Radiação/genética , Epitélio Pigmentado da Retina/anormalidades , Epitélio Pigmentado da Retina/metabolismo
12.
Birth Defects Res ; 110(6): 467-482, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193908

RESUMO

BACKGROUND: Both epidemiological and animal studies have previously indicated a link between in utero radiation exposure and birth defects such as microphthalmos, anophthalmos, and exencephaly. However, detailed knowledge on embryonic radiosensitivity during different stages of neurulation is limited, especially in terms of neural tube defect and eye defect development. METHODS: To assess the most radiosensitive stage during neurulation, pregnant C57BL6/J mice were X-irradiated (0.5 Gy or 1.0 Gy) at embryonic days (E)7, E7.5, E8, E8.5, or E9. Next, the fetuses were scored macroscopically for various defects and prenatal resorptions/deaths were counted. In addition, cranial skeletal development was ascertained using the alcian-alizarin method. Furthermore, postnatal/young adult survival was followed until 5 weeks (W5) of age, after X-irradiation at E7.5 (0.1 Gy, 0.5 Gy, or 1.0 Gy). In addition, body and brain weights were registered at adult age (W10) following X-ray exposure at E7.5 (0.1 Gy, 0.5 Gy). RESULTS: Several malformations, including microphthalmos and exencephaly, were most evident after irradiation at E7.5, with significance starting respectively at 0.5 Gy and 1.0 Gy. Prenatal mortality and weight were significantly affected in all irradiated groups. Long-term follow-up of E7.5 irradiated animals revealed a reduction in survival at 5 weeks of age after high dose exposure (1.0 Gy), while lower doses (0.5 Gy, 0.1 Gy) did not affect brain and body weight at postnatal week 10. CONCLUSIONS: With this study, we gained more insight in radiosensitivity throughout neurulation, and offered a better defined model to further study radiation-induced malformations and the underlying mechanisms.


Assuntos
Anormalidades Congênitas/etiologia , Anormalidades Congênitas/mortalidade , Neurulação/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Embrião de Mamíferos/efeitos da radiação , Feminino , Morte Fetal , Peso Fetal/efeitos da radiação , Feto/efeitos da radiação , Camundongos , Tolerância a Radiação , Raios X
13.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170263

RESUMO

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Assuntos
Encéfalo/efeitos da radiação , Radiação Ionizante , Pesquisa , Software , Relação Dose-Resposta à Radiação , Humanos
14.
PLoS One ; 11(5): e0155260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27203085

RESUMO

During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight.


Assuntos
Neurônios/citologia , Neurônios/efeitos da radiação , Ausência de Peso/efeitos adversos , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Califórnio/efeitos adversos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Radiação Cósmica/efeitos adversos , Imuno-Histoquímica , Camundongos , Neuritos/fisiologia , Neuritos/efeitos da radiação , Radiação Ionizante/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simulação de Ausência de Peso , Raios X/efeitos adversos
15.
J Neurodev Disord ; 7(1): 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029273

RESUMO

BACKGROUND: In humans, in utero exposure to ionising radiation results in an increased prevalence of neurological aberrations, such as small head size, mental retardation and decreased IQ levels. Yet, the association between early damaging events and long-term neuronal anomalies remains largely elusive. METHODS: Mice were exposed to different X-ray doses, ranging between 0.0 and 1.0 Gy, at embryonic days (E) 10, 11 or 12 and subjected to behavioural tests at 12 weeks of age. Underlying mechanisms of irradiation at E11 were further unravelled using magnetic resonance imaging (MRI) and spectroscopy, diffusion tensor imaging, gene expression profiling, histology and immunohistochemistry. RESULTS: Irradiation at the onset of neurogenesis elicited behavioural changes in young adult mice, dependent on the timing of exposure. As locomotor behaviour and hippocampal-dependent spatial learning and memory were most particularly affected after irradiation at E11 with 1.0 Gy, this condition was used for further mechanistic analyses, focusing on the cerebral cortex and hippocampus. A classical p53-mediated apoptotic response was found shortly after exposure. Strikingly, in the neocortex, the majority of apoptotic and microglial cells were residing in the outer layer at 24 h after irradiation, suggesting cell death occurrence in differentiating neurons rather than proliferating cells. Furthermore, total brain volume, cortical thickness and ventricle size were decreased in the irradiated embryos. At 40 weeks of age, MRI showed that the ventricles were enlarged whereas N-acetyl aspartate concentrations and functional anisotropy were reduced in the cortex of the irradiated animals, indicating a decrease in neuronal cell number and persistent neuroinflammation. Finally, in the hippocampus, we revealed a reduction in general neurogenic proliferation and in the amount of Sox2-positive precursors after radiation exposure, although only at a juvenile age. CONCLUSIONS: Our findings provide evidence for a radiation-induced disruption of mouse brain development, resulting in behavioural differences. We propose that alterations in cortical morphology and juvenile hippocampal neurogenesis might both contribute to the observed aberrant behaviour. Furthermore, our results challenge the generally assumed view of a higher radiosensitivity in dividing cells. Overall, this study offers new insights into irradiation-dependent effects in the embryonic brain, of relevance for the neurodevelopmental and radiobiological field.

16.
Int J Radiat Biol ; 90(7): 560-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24646080

RESUMO

PURPOSE: Ionizing radiation has been recognized to increase the risk of cardiovascular diseases (CVD). However, there is no consensus concerning the dose-risk relationship for low radiation doses and a mechanistic understanding of low dose effects is needed. MATERIAL AND METHODS: Previously, human umbilical vein endothelial cells (HUVEC) were exposed to chronic low dose rate radiation (1.4 and 4.1 mGy/h) during one, three and six weeks which resulted in premature senescence in cells exposed to 4.1 mGy/h. To gain more insight into the underlying signaling pathways, we analyzed gene expression changes in these cells using microarray technology. The obtained data were analyzed in a dual approach, combining single gene expression analysis and Gene Set Enrichment Analysis. RESULTS: An early stress response was observed after one week of exposure to 4.1 mGy/h which was replaced by a more inflammation-related expression profile after three weeks and onwards. This early stress response may trigger the radiation-induced premature senescence previously observed in HUVEC irradiated with 4.1 mGy/h. A dedicated analysis pointed to the involvement of insulin-like growth factor binding protein 5 (IGFBP5) signaling in radiation-induced premature senescence. CONCLUSION: Our findings motivate further research on the shape of the dose-response and the dose rate effect for radiation-induced vascular senescence.


Assuntos
Senescência Celular/efeitos da radiação , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Transcriptoma/efeitos da radiação
17.
Cytometry A ; 85(2): 188-99, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24222510

RESUMO

High content cell-based screens are rapidly gaining popularity in the context of neuronal regeneration studies. To analyze neuronal morphology, automatic image analysis pipelines have been conceived, which accurately quantify the shape changes of neurons in cell cultures with non-dense neurite networks. However, most existing methods show poor performance for well-connected and differentiated neuronal networks, which may serve as valuable models for inter alia synaptogenesis. Here, we present a fully automated method for quantifying the morphology of neurons and the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically determines various morphological parameters of the soma and the neurites (size, shape, starting points, and fractional occupation). The image analysis pipeline consists of a multi-tier approach in which the somas are segmented by adaptive region growing using nuclei as seeds, and the neurites are delineated by a combination of various intensity and edge detection algorithms. Quantitative comparison showed a superior performance of MorphoNeuroNet to existing analysis tools, especially for revealing subtle changes in thin neurites, which have weak fluorescence intensity compared to the rest of the network. The proposed method will help determining the effects of compounds on cultures with dense neurite networks, thereby boosting physiological relevance of cell-based assays in the context of neuronal diseases.


Assuntos
Córtex Cerebral/citologia , Processamento de Imagem Assistida por Computador , Rede Nervosa/ultraestrutura , Neuritos/ultraestrutura , Software , Algoritmos , Animais , Automação Laboratorial , Feto , Camundongos , Neurogênese , Cultura Primária de Células
18.
PLoS One ; 8(9): e73857, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066080

RESUMO

One of the objectives of the current international space programmes is to investigate the possible effects of the space environment on the crew health. The aim of this work was to assess the particular effects of simulated microgravity on mature primary neuronal networks and specially their plasticity and connectivity. For this purpose, primary mouse neurons were first grown for 10 days as a dense network before being placed in the Random Positioning Machine (RPM), simulating microgravity. These cultures were then used to investigate the impact of short- (1 h), middle- (24 h) and long-term (10 days) exposure to microgravity at the level of neurite network density, cell morphology and motility as well as cytoskeleton properties in established two-dimensional mature neuronal networks. Image processing analysis of dense neuronal networks exposed to simulated microgravity and their subsequent recovery under ground conditions revealed different neuronal responses depending on the duration period of exposure. After short- and middle-term exposures to simulated microgravity, changes in neurite network, neuron morphology and viability were observed with significant alterations followed by fast recovery processes. Long exposure to simulated microgravity revealed a high adaptation of single neurons to the new gravity conditions as well as a partial adaptation of neuronal networks. This latter was concomitant to an increase of apoptosis. However, neurons and neuronal networks exposed for long-term to simulated microgravity required longer recovery time to re-adapt to the ground gravity. In conclusion, a clear modulation in neuronal plasticity was evidenced through morphological and physiological changes in primary neuronal cultures during and after simulated microgravity exposure. These changes were dependent on the duration of exposure to microgravity.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Simulação de Ausência de Peso , Animais , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos
19.
Int J Radiat Biol ; 89(10): 841-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23692394

RESUMO

PURPOSE: The low dose radiation response of primary human umbilical vein endothelial cells (HUVEC) and its immortalized derivative, the EA.hy926 cell line, was evaluated and compared. MATERIAL AND METHODS: DNA damage and repair, cell cycle progression, apoptosis and cellular morphology in HUVEC and EA.hy926 were evaluated after exposure to low (0.05-0.5 Gy) and high doses (2 and 5 Gy) of acute X-rays. RESULTS: Subtle, but significant increases in DNA double-strand breaks (DSB) were observed in HUVEC and EA.hy926 30 min after low dose irradiation (0.05 Gy). Compared to high dose irradiation (2 Gy), relatively more DSB/Gy were formed after low dose irradiation. Also, we observed a dose-dependent increase in apoptotic cells, down to 0.5 Gy in HUVEC and 0.1 Gy in EA.hy926 cells. Furthermore, radiation induced significantly more apoptosis in EA.hy926 compared to HUVEC. CONCLUSIONS: We demonstrated for the first time that acute low doses of X-rays induce DNA damage and apoptosis in endothelial cells. Our results point to a non-linear dose-response relationship for DSB formation in endothelial cells. Furthermore, the observed difference in radiation-induced apoptosis points to a higher radiosensitivity of EA.hy926 compared to HUVEC, which should be taken into account when using these cells as models for studying the endothelium radiation response.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta à Radiação , Determinação de Ponto Final , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Raios X
20.
Int J Mol Med ; 31(3): 516-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23338045

RESUMO

During cortical development, N-methyl D-aspartate (NMDA) receptors are highly involved in neuronal maturation and synapse establishment. Their implication in the phenomenon of excitotoxicity has been extensively described in several neurodegenerative diseases due to the permissive entry of Ca2+ ions and massive accumulation in the intracellular compartment, which is highly toxic to cells. Ionising radiation is also a source of stress to the cells, particularly immature neurons. Their capacity to induce cell death has been described for various cell types either by directly damaging the DNA or indirectly through the generation of reactive oxygen species responsible for the activation of a battery of stress response effectors leading in certain cases, to cell death. In this study, in order to determine whether a link exists between NMDA receptors-mediated excitotoxicity and radiation-induced cell death, we evaluated radiation-induced cell death in vitro and in vivo in maturing neurons during the fetal period. Cell death induction was assessed by TUNEL, caspase-3 activity and DNA ladder assays, with or without the administration of dizocilpine (MK-801), a non-competitive NMDA receptor antagonist which blocks neuronal Ca2+ influx. To further investigate the possible involvement of Ca2+-dependent enzyme activation, known to occur at high Ca2+ concentrations, we examined the protective effect of a calpain inhibitor on cell death induced by radiation. Doses ranging from 0.2 to 0.6 Gy of X-rays elicited a clear apoptotic response that was prevented by the injection of dizocilpine (MK-801) or calpain inhibitor. These data demonstrate the involvement of NMDA receptors in radiation-induced neuronal death by the activation of downstream effectors, including calpain-related pathways. An increased apoptotic process elicited by radiation, occurring independently of the normal developmental scheme, may eliminate post-mitotic but immature neuronal cells and deeply impair the establishment of the neuronal network, which in the case of cortical development is critical for cognitive capacities.


Assuntos
Apoptose/efeitos da radiação , Encéfalo/efeitos da radiação , Neurônios , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calpaína/metabolismo , Caspase 3/análise , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA/efeitos da radiação , Maleato de Dizocilpina/farmacologia , Glicoproteínas/farmacologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Radiação Ionizante , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...