Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559242

RESUMO

Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.

3.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790902

RESUMO

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
4.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34416073

RESUMO

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Rev Drug Discov ; 20(10): 789-797, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34285415

RESUMO

Proteolysis-targeting chimeras (PROTACs) are an emerging drug modality that may offer new opportunities to circumvent some of the limitations associated with traditional small-molecule therapeutics. By analogy with the concept of the 'druggable genome', the question arises as to which potential drug targets might PROTAC-mediated protein degradation be most applicable. Here, we present a systematic approach to the assessment of the PROTAC tractability (PROTACtability) of protein targets using a series of criteria based on data and information from a diverse range of relevant publicly available resources. Our approach could support decision-making on whether or not a particular target may be amenable to modulation using a PROTAC. Using our approach, we identified 1,067 proteins of the human proteome that have not yet been described in the literature as PROTAC targets that offer potential opportunities for future PROTAC-based efforts.


Assuntos
Desenho de Fármacos , Genoma , Animais , Humanos , Projetos de Pesquisa , Bibliotecas de Moléculas Pequenas
6.
SLAS Discov ; 26(7): 885-895, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34041938

RESUMO

Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteólise/efeitos dos fármacos , Humanos , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Expert Opin Ther Pat ; 31(1): 1-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33081540

RESUMO

INTRODUCTION: PROTACs represent a novel class of heterobifunctional molecules that simultaneously bind to a target protein and to an E3 ligase complex, resulting in the transfer of ubiquitin and initiating a process ultimately causing the proteasomal degradation of the target protein. This mechanism of action imbues PROTACs with the ability to modulate target biology in unique ways compared to inhibitors, and the development of PROTACs as therapeutic agents is expected to result in new medicines to treat multiple diseases. AREAS COVERED: This review includes published PCT (WO) patent applications covering January 2013 through June 2020. Only English-language patent applications with exemplified PROTACs reported to degrade a target protein(s) were deemed in scope, and the definition of 'PROTAC' was restricted to a bifunctional molecule which contains a discrete binding element for a specific degradation target(s), as well as a separate discrete E3 ligase-binding moiety. EXPERT OPINION: Delivering on the enormous potential of PROTACs will require the development of PROTAC medicines that are differentiated from traditional small-molecule inhibitors. The modular composition of PROTACs affords both opportunities and challenges in securing robust intellectual property, and we envision that requirements for novelty are likely to evolve as this area matures.


Assuntos
Desenvolvimento de Medicamentos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Desenho de Fármacos , Humanos , Patentes como Assunto , Ubiquitinação
8.
Haematologica ; 106(7): 1979-1987, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586904

RESUMO

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Azacitidina/farmacologia , Metilação de DNA , Hemoglobina Fetal/genética , Camundongos , gama-Globinas/genética
9.
ACS Chem Biol ; 15(9): 2316-2323, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32697072

RESUMO

The Bcl-2 family of proteins, such as Bcl-xL and Bcl-2, play key roles in cancer cell survival. Structural studies of Bcl-xL formed the foundation for the development of the first Bcl-2 family inhibitors and FDA approved drugs. Recently, Proteolysis Targeting Chimeras (PROTACs) that degrade Bcl-xL have been proposed as a therapeutic modality with the potential to enhance potency and reduce toxicity versus antagonists. However, no ternary complex structures of Bcl-xL with a PROTAC and an E3 ligase have been successfully determined to guide this approach. Herein, we report the design, characterization, and X-ray structure of a VHL E3 ligase-recruiting Bcl-xL PROTAC degrader. The 1.9 Å heterotetrameric structure, composed of (ElonginB:ElonginC:VHL):PROTAC:Bcl-xL, reveals an extensive network of neo-interactions, between the E3 ligase and the target protein, and between noncognate parts of the PROTAC and partner proteins. This work illustrates the challenges associated with the rational design of bifunctional molecules where interactions involve composite interfaces.


Assuntos
Benzotiazóis/metabolismo , Isoquinolinas/metabolismo , Oligopeptídeos/metabolismo , Proteólise/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína bcl-X/antagonistas & inibidores , Benzotiazóis/química , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Proteína bcl-X/química , Proteína bcl-X/metabolismo
10.
Commun Biol ; 3(1): 140, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198438

RESUMO

Proteolysis-Targeting Chimeras (PROTACs) are heterobifunctional small-molecules that can promote the rapid and selective proteasome-mediated degradation of intracellular proteins through the recruitment of E3 ligase complexes to non-native protein substrates. The catalytic mechanism of action of PROTACs represents an exciting new modality in drug discovery that offers several potential advantages over traditional small-molecule inhibitors, including the potential to deliver pharmacodynamic (PD) efficacy which extends beyond the detectable pharmacokinetic (PK) presence of the PROTAC, driven by the synthesis rate of the protein. Herein we report the identification and development of PROTACs that selectively degrade Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) and demonstrate in vivo degradation of endogenous RIPK2 in rats at low doses and extended PD that persists in the absence of detectable compound. This disconnect between PK and PD, when coupled with low nanomolar potency, offers the potential for low human doses and infrequent dosing regimens with PROTAC medicines.


Assuntos
Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Inflamação/prevenção & controle , Leucócitos Mononucleares/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/enzimologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/enzimologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Estabilidade Enzimática , Feminino , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Injeções Intravenosas , Leucócitos Mononucleares/enzimologia , Masculino , Proteólise , Ratos Sprague-Dawley , Ratos Wistar , Células THP-1 , Técnicas de Cultura de Tecidos , Ubiquitinação
11.
Bioorg Med Chem Lett ; 30(9): 127106, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184044

RESUMO

Inhibitors of CDK4 and CDK6 have emerged as important FDA-approved treatment options for breast cancer patients. The properties and pharmacology of CDK4/6 inhibitor medicines have been extensively profiled, and investigations into the degradation of these targets via a PROTAC strategy have also been reported. PROTACs are a novel class of small-molecules that offer the potential for differentiated pharmacology compared to traditional inhibitors by redirecting the cellular ubiquitin-proteasome system to degrade target proteins of interest. We report here the preparation of palbociclib-based PROTACs that incorporate binders for three different E3 ligases, including a novel IAP-binder, which effectively degrade CDK4 and CDK6 in cells. In addition, we show that the palbociclib-based PROTACs in this study that recruit different E3 ligases all exhibit preferential CDK6 vs. CDK4 degradation selectivity despite employing a selection of linkers between the target binder and the E3 ligase binder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/química , Quinase 4 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
12.
Bioorg Med Chem Lett ; 29(16): 2410-2414, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31160176

RESUMO

The discovery of a novel series of peptide deformylase inhibitors incorporating a piperazic acid amino acid found in nature is described. These compounds demonstrated potent in vitro enzymatic potency and antimicrobial activity. Crystal structure analysis revealed the piperazic acid optimized a key contact with the PDF protein that accounted for the increased enzymatic potency of these compounds. We describe lead optimization of the P3' region of the series that resulted in a compound with good potency against three target organisms. One molecule showed in vivo efficacy in a rat respiratory infection model but ultimately did not meet candidate progression criteria.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Piridazinas/farmacologia , Infecções Respiratórias/tratamento farmacológico , Dermatopatias Infecciosas/tratamento farmacológico , Amidoidrolases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Infecções Respiratórias/metabolismo , Dermatopatias Infecciosas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 28(23-24): 3676-3680, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554630

RESUMO

Beta-hemoglobinopathies such as sickle cell disease represent a major global unmet medical need. De-repression of fetal hemoglobin in erythrocytes is a clinically validated approach for the management of sickle cell disease, but the only FDA-approved medicine for this purpose has limitations to its use. We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules with the ability to de-repress fetal hemoglobin, which resulted in the identification of the benzoxaborole-containing hit compound 1. This compound was found to have modest cellular potency and lead-like pharmacokinetics, but no identifiable SAR to enable optimization. Systematic deconstruction of a closely related analog of 1 revealed the fragment-like carboxylic acid 12, which was then optimized to provide tetrazole 31, which had approximately 100-fold improved cellular potency compared to 1, high levels of oral exposure in rats, and excellent solubility.


Assuntos
Benzoxazóis/química , Hemoglobina Fetal/metabolismo , Animais , Benzoxazóis/farmacocinética , Benzoxazóis/farmacologia , Disponibilidade Biológica , Ácidos Borônicos/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Meia-Vida , Humanos , Ratos , Ratos Sprague-Dawley , Solubilidade
14.
PLoS One ; 13(12): e0207140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540745

RESUMO

Atonal homolog 1 (Atoh1) is a basic helix-loop-helix 9 (bHLH) transcription factor acting downstream of Notch and is required for the differentiation of sensory hair cells in the inner ear and the specification of secretory cells during the intestinal crypt cell regeneration. Motivated by the observations that the upregulation of Atoh1 gene expression, through genetic manipulation or pharmacological inhibition of Notch signaling (e.g. γ-secretase inhibitors, GSIs), induces ectopic hair cell growth in the cochlea of the inner ear and partially restores hearing after injuries in experimental models, we decided to identify small molecule modulators of the Notch-Atoh1 pathway, which could potentially regenerate hair cells. However, the lack of cellular models of the inner ear has precluded the screening and characterization of such modulators. Here we report using a colon cancer cell line LS-174T, which displays Notch inhibition-dependent Atoh1 expression as a surrogate cellular model to screen for inducers of Atoh1 expression. We designed an Atoh1 promoter-driven luciferase assay to screen a target-annotated library of ~6000 compounds. We further developed a medium throughput, real-time quantitative RT-PCR assay measuring the endogenous Atoh1 gene expression to confirm the hits and eliminate false positives from the reporter-based screen. This strategy allowed us to successfully recover GSIs of known chemotypes. This LS-174T cell-based assay directly measures Atoh1 gene expression induced through Notch-Hes1 inhibition, and therefore offers an opportunity to identify novel cellular modulators along the Notch-Atoh1 pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores Notch/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Microscopia de Fluorescência , Regiões Promotoras Genéticas , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
15.
Front Mol Neurosci ; 10: 333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089870

RESUMO

Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.

16.
J Med Chem ; 59(15): 7299-304, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27379833

RESUMO

Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in bacterial cell wall synthesis. Here we report the discovery of Staphylococcus aureus UppS inhibitors from an Encoded Library Technology screen and demonstrate binding to the hydrophobic substrate site through cocrystallography studies. The use of bacterial strains with regulated uppS expression and inhibitor resistant mutant studies confirmed that the whole cell activity was the result of UppS inhibition, validating UppS as a druggable antibacterial target.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Alquil e Aril Transferases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
17.
J Biomol Screen ; 18(10): 1212-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24163393

RESUMO

Sickle cell anemia (SCA) is a genetic disorder of the ß-globin gene. SCA results in chronic ischemia with pain and tissue injury. The extent of SCA symptoms can be ameliorated by treatment with drugs, which result in increasing the levels of γ-globin in patient red blood cells. Hydroxyurea (HU) is a Food and Drug Administration-approved drug for SCA, but it has dose-limiting toxicity, and patients exhibit highly variable treatment responses. To identify compounds that may lead to the development of better and safer medicines, we have established a method using primary human bone marrow day 7 erythroid progenitor cells (EPCs) to screen for compounds that induce γ-globin production. First, human marrow CD34(+) cells were cultured and expanded for 7 days and characterized for the expression of erythroid differentiation markers (CD71, CD36, and CD235a). Second, fresh or cryopreserved EPCs were treated with compounds for 3 days in 384-well plates followed by γ-globin quantification by an enzyme-linked immunosorbent assay (ELISA), which was validated using HU and decitabine. From the 7408 compounds screened, we identified at least one new compound with confirmed γ-globin-inducing activity. Hits are undergoing analysis in secondary assays. In this article, we describe the method of generating fit-for-purpose EPCs; the development, optimization, and validation of the ELISA and secondary assays for γ-globin detection; and screening results.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Precursoras Eritroides/metabolismo , Ativação Transcricional/efeitos dos fármacos , gama-Globinas/genética , Anemia Falciforme/tratamento farmacológico , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Ácido Butírico/farmacologia , Sobrevivência Celular , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Decitabina , Ensaio de Imunoadsorção Enzimática , Epigênese Genética/efeitos dos fármacos , Células Precursoras Eritroides/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cultura Primária de Células , gama-Globinas/metabolismo
18.
ACS Med Chem Lett ; 4(12): 1208-12, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900632

RESUMO

Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase.

19.
Tetrahedron ; 63(26): 5739-5753, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-17940589

RESUMO

First and second generation total syntheses of mycolactones A and B are reported. The first generation total synthesis unambiguously confirmed our earlier assignment of the relative and absolute stereochemistry of mycolactones A and B. Knowledge of the chemical properties of the mycolactones accumulated through the first generation total synthesis allowed us to implement several major improvements to the original synthesis, including: (1) optimizing the choice of protecting groups, (2) eliminating the unnecessary adjustment of protecting groups, and (3) improving the overall stereoselectivity and synthetic efficiency. The second generation total synthesis consists of 21 longest linear steps, with 8.8% overall yield.

20.
Org Lett ; 7(3): 399-402, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15673249

RESUMO

[structure: see text] Tetrapyrrolinone somatostatin (SRIF) mimetics (cf. 1), based on a heterochiral (D,L-mixed) pyrrolinone scaffold, were designed, synthesized, and evaluated for biological activity. The iterative synthetic sequence, incorporating the requisite functionalized coded and noncoded amino acid side chains, comprised a longest linear synthetic sequence of 23 steps. Binding affinities at two somatostatin receptor subtypes (hsst 4 and 5) reveal micromolar activity, demonstrating that the d,l-mixed pyrrolinone scaffold can be employed to generate functional mimetics of peptide beta-turns.


Assuntos
Antagonistas de Hormônios/química , Pirróis/síntese química , Pirróis/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Aminoácidos/química , Desenho de Fármacos , Antagonistas de Hormônios/metabolismo , Humanos , Indicadores e Reagentes , Ligantes , Modelos Moleculares , Mimetismo Molecular , Conformação Proteica , Pirróis/farmacologia , Receptores de Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...