Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 135(8): 953-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27344577

RESUMO

Hearing loss is the most common sensory deficit in humans with causative variants in over 140 genes. With few exceptions, however, the population-specific distribution for many of the identified variants/genes is unclear. Until recently, the extensive genetic and clinical heterogeneity of deafness precluded comprehensive genetic analysis. Here, using a custom capture panel (MiamiOtoGenes), we undertook a targeted sequencing of 180 genes in a multi-ethnic cohort of 342 GJB2 mutation-negative deaf probands from South Africa, Nigeria, Tunisia, Turkey, Iran, India, Guatemala, and the United States (South Florida). We detected causative DNA variants in 25 % of multiplex and 7 % of simplex families. The detection rate varied between 0 and 57 % based on ethnicity, with Guatemala and Iran at the lower and higher end of the spectrum, respectively. We detected causative variants within 27 genes without predominant recurring pathogenic variants. The most commonly implicated genes include MYO15A, SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, our study highlights the importance of family history and generation of databases for multiple ethnically discrete populations to improve our ability to detect and accurately interpret genetic variants for pathogenicity.


Assuntos
Surdez/genética , Genética Populacional , Síndromes de Usher/genética , Surdez/epidemiologia , Etnicidade/genética , Feminino , Testes Genéticos , Humanos , Masculino , Mutação , Síndromes de Usher/epidemiologia
2.
Hum Mol Genet ; 24(9): 2482-91, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25601850

RESUMO

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


Assuntos
Cílios/metabolismo , Genes Recessivos , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Linhagem Celular , Mapeamento Cromossômico , Análise Mutacional de DNA , Modelos Animais de Doenças , Proteína Duplacortina , Feminino , Expressão Gênica , Genes Reporter , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Peixe-Zebra
3.
Mol Genet Genomics ; 290(4): 1327-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25633957

RESUMO

Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous.The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher-Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X-Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype-phenotype correlation for the associated phenotypes and clinical follow-up.


Assuntos
Colágeno Tipo XI/genética , Genes Recessivos , Predisposição Genética para Doença/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Sequência de Bases , Colágeno Tipo XI/química , Consanguinidade , Exoma/genética , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Estrutura Terciária de Proteína , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos
4.
Eur J Med Genet ; 54(6): e565-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21816241

RESUMO

We previously mapped the DFNB66 locus to an interval overlapping the DFNB67 region. Mutations in the LHFPL5 gene were identified as a cause of DFNB67 hearing loss (HL). However, screening of the coding exons of LHFPL5 did not reveal any mutation in the DFNB66 family. The objective of this study was to check whether DFNB66 and DFNB67 are distinctive loci and determining their contribution to HL. In the DFNB66 family, sequencing showed absence of mutations in the untranslated regions and the predicted promoter sequence of LHFPL5. Analysis of five microsatellites in the 6p21.31-22.3 region and screening of the LHFPL5 gene by DNA heteroduplex analysis in DHPLC revealed a novel mutation (c.89dup) in one out of 129 unrelated Tunisian families with autosomal recessive nonsyndromic (ARNS) HL. Our findings suggest that two distinct genes are responsible for DFNB66 and DFNB67 HL. These loci are likely to be a rare cause of ARNSHL.


Assuntos
Mutação da Fase de Leitura , Perda Auditiva Neurossensorial/genética , Análise Heteroduplex/métodos , Proteínas de Membrana/genética , Alelos , Estudos de Casos e Controles , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Consanguinidade , Análise Mutacional de DNA , Éxons , Feminino , Genes Recessivos , Loci Gênicos , Haplótipos , Homozigoto , Humanos , Íntrons , Masculino , Repetições de Microssatélites , Linhagem , Irmãos , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...