Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 87(18): 10163-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23843636

RESUMO

Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Antígenos HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Adjuvantes Imunológicos/administração & dosagem , Animais , Reagentes de Ligações Cruzadas/metabolismo , Antígenos HIV/química , Antígenos HIV/metabolismo , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
2.
Ann Bot ; 91 Spec No: 205-11, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509341

RESUMO

Rumex palustris has the capacity to respond to complete submergence with hyponastic (upward) growth and stimulated elongation of petioles. These adaptive responses allow survival of this plant in habitats with sustained high water levels by re-establishing contact with the aerial environment. Accumulated ethylene in submerged petioles interacts with ethylene receptor proteins and operates as a reliable sensor for the under-water environment. Further downstream in the transduction pathway, a fast and substantial decrease of the endogenous abscisic acid concentration and a certain threshold level of endogenous auxin and gibberellin are required for hyponastic growth and petiole elongation. Interactions of these plant hormones results in a significant increase of the in vitro cell wall extensibility in submerged petioles. Furthermore, the pattern of transcript accumulation of a R. palustris alpha-expansin gene correlated with the pattern of petiole elongation upon submergence.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/fisiologia , Rumex/fisiologia , Adaptação Fisiológica , Transdução de Sinais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA