Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 94(4-1): 043306, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841484

RESUMO

The present work proposes a simple lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media. By incorporating forces and source terms into the lattice Boltzmann equation, the incompressible Navier-Stokes equations are recovered through the Chapman-Enskog expansion. It is found that the added terms are just the extra terms in the governing equations for the axisymmetric thermal flows through porous media compared with the Navier-Stokes equations. Four numerical simulations are performed to validate this model. Good agreement is obtained between the present work and the analytic solutions and/or the results of previous studies. This proves its efficacy and simplicity regarding other methods. Also, this approach provides guidance for problems with more physical phenomena and complicated force forms.

2.
J Hazard Mater ; 181(1-3): 609-16, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20542372

RESUMO

When the explosion of condensed materials occurs in a tunnel, the subsequent blast wave reveals two patterns. The region close to the explosive charge exhibits a free-field overpressure decay pattern and the region far from the explosion, which undergoes much less overpressure decay, exhibits a quasi-one-dimensional pattern. Well-known overpressure decay laws that are applicable in each region already exist. In order to assess the validity range of each of these laws, the blast wave due an explosion inside a typical confined geometry is examined in order to determine the position of the transition zone from the free pattern to the one-dimensional pattern. To this end, the detonation of different quantities of explosive charges was simulated inside a tunnel with a constant cross-sectional area, and the wave aspect was determined for each region. This paper proposes a correlation law that defines the transition distance according to the explosive charge's weight and material and the geometry of the propagating domain. The validity of the proposed correlation law is corroborated by experimental results. In the authors' opinion, this law may be helpful for rapidly and efficiently drawing up the blast wave damage map.


Assuntos
Explosões , Simulação por Computador , Modelos Teóricos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...