Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Comput Biol Med ; 177: 108630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781643

RESUMO

Scaffolds are an essential component of bone tissue engineering to provide support and create a physiological environment for cells. Biomimetic scaffolds are a promising approach to fulfill the requirements. Bone allografts are widely used scaffolds due to their mechanical and structural characteristics. The scaffold geometry is well known to be an important determinant of induced mechanical stimulation felt by the cells. However, the impact of allograft geometry on permeability and wall shear stress distribution is not well understood. This information is essential for designing biomimetic scaffolds that provide a suitable environment for cells to proliferate and differentiate. The present study investigates the effect of geometry on the permeability and wall shear stress of bone allografts at both macroscopic and microscopic scales. Our results concluded that the wall shear stress was strongly correlated with the porosity of the allograft. The level of wall shear stress at a local scale was also determined by the surface curvature characteristics. The results of this study can serve as a guideline for future biomimetic scaffold designs that provide a mechanical environment favorable for osteogenesis and bone repair.


Assuntos
Estresse Mecânico , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Humanos , Osso Esponjoso , Materiais Biomiméticos/química , Permeabilidade , Animais , Engenharia Tecidual/métodos , Resistência ao Cisalhamento
3.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38135929

RESUMO

The mechanical properties of bone tissue are the result of a complex process involving collagen-crystal interactions. The mineral density of the bone tissue is correlated with bone strength, whereas the characteristics of collagen are often associated with the ductility and toughness of the bone. From a clinical perspective, bone mineral density alone does not satisfactorily explain skeletal fragility. However, reliable in vivo markers of collagen quality that can be easily used in clinical practice are not available. Hence, the objective of the present study is to examine the relationship between skin surface morphology and changes in the mechanical properties of the bone. An experimental study was conducted on healthy children (n = 11), children with osteogenesis imperfecta (n = 13), and women over 60 years of age (n = 22). For each patient, the skin characteristic length (SCL) of the forearm skin surface was measured. The SCL quantifies the geometric patterns formed by wrinkles on the skin's surface, both in terms of size and elongation. The greater the SCL, the more deficient was the organic collagen matrix. In addition, the bone volume fraction and mechanical properties of the explanted femoral head were determined for the elderly female group. The mean SCL values of the healthy children group were significantly lower than those of the elderly women and osteogenesis imperfecta groups. For the aged women group, no significant differences were indicated in the elastic mechanical parameters, whereas bone toughness and ductility decreased significantly as the SCL increased. In conclusion, in bone collagen pathology or bone aging, the SCL is significantly impaired. This in vivo skin surface parameter can be a non-invasive tool to improve the estimation of bone matrix quality and to identify subjects at high risk of bone fracture.

4.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176232

RESUMO

Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.

5.
Tissue Eng Part B Rev ; 29(1): 47-61, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35754335

RESUMO

Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Medicina Regenerativa
6.
Am J Transplant ; 22(12): 2961-2970, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35778956

RESUMO

Over the past 25 years, we have demonstrated the feasibility of airway bioengineering using stented aortic matrices experimentally then in a first-in-human trial (n = 13). The present TRITON-01 study analyzed all the patients who had airway replacement at our center to confirm that this innovative approach can be now used as usual care. For each patient, the following data were prospectively collected: postoperative mortality and morbidity, late airway complications, stent removal and status at last follow-up on November 2, 2021. From October 2009 to October 2021, 35 patients had airway replacement for malignant (n = 29) or benign (n = 6) lesions. The 30-day postoperative mortality and morbidity rates were 2.9% (n = 1/35) and 22.9% (n = 8/35) respectively. At a median follow-up of 29.5 months (range 1-133 months), 27 patients were alive. There have been no deaths directly related to the implanted bioprosthesis. Eighteen patients (52.9%) had stent-related granulomas requiring a bronchoscopic treatment. Ten among 35 patients (28.6%) achieved a stent free survival. The actuarial 2- and 5-year survival rates (Kaplan-Meier estimates) were respectively 88% and 75%. The TRITON-01 study confirmed that airway replacement using stented aortic matrices can be proposed as usual care at our center. Clinicaltrials.gov Identifier: NCT04263129.


Assuntos
Estenose da Valva Aórtica , Bioprótese , Próteses Valvulares Cardíacas , Adulto , Humanos , Estenose da Valva Aórtica/cirurgia , Seguimentos , Complicações Pós-Operatórias , Stents , Resultado do Tratamento
7.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35254402

RESUMO

Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.


Assuntos
Acantose Nigricans , Disostose Craniofacial , Craniossinostoses , Acantose Nigricans/complicações , Acantose Nigricans/genética , Animais , Encéfalo , Disostose Craniofacial/complicações , Disostose Craniofacial/genética , Craniossinostoses/genética , Modelos Animais de Doenças , Transtornos da Memória/genética , Camundongos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
8.
J Orthop Surg Res ; 17(1): 7, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986843

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) repair techniques are new emerging strategies prevailing, in selected cases, over standard reconstruction of the ACL with excision of its remnants. Mid-substance ACL tears represent a challenge for ACL repair techniques, and remnants-preserving ACL reconstruction (rp-ACLR) using an autograft remains the recommended treatment in this situation. However, morbidity associated with the autograft harvesting prompts the need for alternative surgical strategies based on the use of synthetic scaffolds. Relevant small animal models of mid-substance tears with ACL remnants preservation and reconstruction are necessary to establish the preliminary proof of concept of these new strategies. METHODS: A rat model of rp-ACLR using a tendinous autograft after complete mid-substance ACL transection was established. Twelve weeks following surgery, clinical outcomes and knee joints were assessed through visual gait analysis, Lachman tests, thigh perimeter measurements, magnetic resonance imaging, micro-computed tomography, and histology, to evaluate the morbidity of the procedure, accuracy of bone tunnel positioning, ACL remnants fate, osteoarthritis, and autograft bony integration. Results were compared with those obtained with isolated ACL transection without reconstruction and to right non-operated knees. RESULTS AND DISCUSSION: Most operated animals were weight-bearing the day following surgery, and no adverse inflammatory reaction has been observed for the whole duration of the study. Autograft fixation with cortical screws provided effective graft anchorage until sacrifice. Healing of the transected ACL was not observed in the animals in which no graft reconstruction was performed. rp-ACLR was associated with a reduced degeneration of the ACL remnants (p = 0.004) and cartilages (p = 0.0437). Joint effusion and synovitis were significantly lower in the reconstructed group compared to the transected ACL group (p = 0.004). Most of the bone tunnel apertures were anatomically positioned in the coronal and/or sagittal plane. The most deviated bone tunnel apertures were the tibial ones, located in median less than 1 mm posteriorly to anatomical ACL footprint center. CONCLUSION: This study presents a cost-effective, new relevant and objective rat model associated with low morbidity for the preliminary study of bio-implantable materials designed for remnants-preserving ACL surgery after mid-substance ACL tear.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Autoenxertos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Modelos Animais , Ratos , Tíbia/cirurgia , Transplante Autólogo , Microtomografia por Raio-X
9.
Orthop Traumatol Surg Res ; 108(3): 103116, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34666200

RESUMO

BACKGROUND: In more than 50% of cases, anterior cruciate ligament (ACL) lesions lead to post-traumatic osteoarthritis. Ligament reconstruction stabilizes the joint, but the tear seems to impair the poroelasticity of the cartilage: synovial membrane fluid inflammation is observed 3 weeks after tearing. There have been some descriptions of visible cartilage changes, but poroelasticity has never been analyzed at this early stage. The present animal study aimed to determine (1) whether cartilage showed early poroelastic deterioration after ACL tear; (2) whether an impairment correlated with macroscopic changes; and (3) whether cartilage poroelasticity deteriorated over time. HYPOTHESIS: In the days following trauma, cartilage poroelasticity is greatly impaired, without macroscopically visible change. MATERIAL AND METHODS: ACL tear was surgically induced in 18 New-Zealand rabbits. Cartilage poroelasticity was assessed on indentation-relaxation test in 3 groups: "early", at 2 weeks postoperatively (n=6), "mid-early" at 6 weeks (n=6) and in a non-operated control group ("non-op"). Macroscopic changes were scored in the same groups. RESULTS: Poroelastic impairment was greatest at the early time-point (2 weeks). Permeability ranged from a mean 0.08±0.05×10-15 m4/Ns (range, 0.028-0.17) in the "non-op" group to 1.03±0.60×10-15 m4/Ns (range, 0.24-2.15) in the "early" group (p=0.007). Shear modulus ranged from 0.53±0.11MPa (range, 0.36-0.66) to 0.23±0.10MPa (range, 0.12-0.43), respectively (p=0.013). Macroscopic deterioration, on the other hand, differed significantly only between the "mid-early" and the "non-op" groups: p=0.011 for cartilage deterioration and p=0.008 for osteophyte formation. At the "mid-early" time point, poroelastic deterioration was less marked, with 0.33±0.33×10-15 m4/Ns permeability (range, 0.06-1.06) and shear modulus 0.30±0.10MPa (range, 0.13-0.41: respectively p=0.039 and p=0.023 compared to the "non-op" group. DISCUSSION: The severe rapid deterioration in poroelasticity following ACL tear in an animal model, as notably seen in increased permeability, corresponds to changes in cartilage microstructure, with easier outflows of interstitial fluid. This mechanical degradation may underlie onset of microcracks within the cartilage, leading to physiological loading that the cartilage by its nature is unable to repair. Further investigations are needed to correlate these experimental data with clinical findings. LEVEL OF EVIDENCE: III; comparative study with control group.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Animais , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/cirurgia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Humanos , Coelhos , Ruptura/cirurgia
10.
Mater Sci Eng C Mater Biol Appl ; 127: 112207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225859

RESUMO

Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p < 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p < 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.


Assuntos
Matriz Óssea , Crânio , Animais , Regeneração Óssea , Transplante Ósseo , Osteogênese , Ratos
11.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572905

RESUMO

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células-Tronco Mesenquimais/patologia , Animais , Diferenciação Celular , Proliferação de Células , Leucócitos Mononucleares/patologia , Masculino , Camundongos Nus , Neovascularização Fisiológica , Osteogênese , Ratos Zucker , Magreza/patologia
13.
Life (Basel) ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255288

RESUMO

Although physical exercise has unquestionable benefits on bone health, its effects on bone healing have been poorly investigated. This study evaluated the effects of preemptive moderate continuous running on the healing of non-critical sized bone defects in rats by µCT. We hypothesized that a preemptive running exercise would quicken bone healing. Twenty 5-week-old, male, Wistar rats were randomly allocated to one of the following groups (n = 10): sedentary control (SED) or continuous running (EX, 45 min/d, 5 d/week at moderate speed, for 8 consecutive weeks). A 2 mm diameter bone defect was then performed in the right tibia and femur. No exercise was performed during a 4 week-convalescence. Healing-tissue trabecular microarchitectural parameters were assessed once a week for 4 weeks using µCT and plasma bone turnover markers measured at the end of the study protocol (time point T12). At T12, bone volume fraction (BV/TV; BV: bone volume, TV: tissue volume) of the healing tissue in tibiae and femurs from EX rats was higher compared to that in SED rats (p = 0.001). BV/TV in EX rats was also higher in tibiae than in femurs (p < 0.01). The bone mineral density of the healing tissue in femurs from EX rats was higher compared to that in femurs from SED rats (p < 0.03). N-terminal telopeptide of collagen type I in EX rats was decreased compared to SED rats (p < 0.05), while no differences were observed for alkaline phosphatase and parathyroid hormone. The study provides evidence that preemptive moderate continuous running improves the healing of non-critical sized bone defects in male Wistar rats.

14.
Stem Cell Reports ; 15(4): 955-967, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32916123

RESUMO

Most organs and tissues in the body, including bone, can repair after an injury due to the activation of endogenous adult stem/progenitor cells to replace the damaged tissue. Inherent dysfunctions of the endogenous stem/progenitor cells in skeletal repair disorders are still poorly understood. Here, we report that Fgfr3Y637C/+ over-activating mutation in Prx1-derived skeletal stem/progenitor cells leads to failure of fracture consolidation. We show that periosteal cells (PCs) carrying the Fgfr3Y637C/+ mutation can engage in osteogenic and chondrogenic lineages, but following transplantation do not undergo terminal chondrocyte hypertrophy and transformation into bone causing pseudarthrosis. Instead, Prx1Cre;Fgfr3Y637C/+ PCs give rise to fibrocartilage and fibrosis. Conversely, wild-type PCs transplanted at the fracture site of Prx1Cre;Fgfr3Y637C/+ mice allow hypertrophic cartilage transition to bone and permit fracture consolidation. The results thus highlight cartilage-to-bone transformation as a necessary step for bone repair and FGFR3 signaling within PCs as a key regulator of this transformation.


Assuntos
Regeneração Óssea , Osso e Ossos/patologia , Cartilagem/patologia , Periósteo/metabolismo , Pseudoartrose/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Calo Ósseo/patologia , Diferenciação Celular , Consolidação da Fratura , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Tíbia/patologia
15.
Acta Biomater ; 116: 186-200, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911108

RESUMO

While human bone morphogenetic protein-2 (BMP-2) is a promising growth factor for bone regeneration, a major challenge in biomedical applications is finding an optimal carrier for its delivery at the site of injury. Because of their natural affinities for growth factors (including BMP-2) as well as their role in instructing cell function, cultured cell-derived extracellular matrices (ECM) are of special interest. We hereby hypothesized that a "bony matrix" containing mineralized, osteogenic ECM is a potential efficacious carrier of BMP-2 for promoting bone formation and, therefore, compared the efficacy of the decellularized ECM derived from osteogenic-differentiated human mesenchymal stem cells (hMSCs) to the one obtained from ECM from undifferentiated hMSCs. Our results provided evidence that both ECMs can bind BMP-2 and promote bone formation when implanted ectopically in mice. The osteoinductive potential of BMP-2, however, was greater when loaded within an osteogenic MSC-derived ECM; this outcome was correlated with higher sequestration capacity of BMP-2 over time in vivo. Interestingly, although the BMP-2 mainly bound onto the mineral crystals contained within the osteogenic MSC derived-ECM, these mineral components were not involved in the observed higher osteoinductivity, suggesting that the organic components were the critical components for the matrix efficacy as BMP-2 carrier.


Assuntos
Células-Tronco Mesenquimais , Animais , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Diferenciação Celular , Células Cultivadas , Matriz Extracelular , Camundongos , Osteogênese
16.
Stem Cells ; 38(1): 22-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408238

RESUMO

In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Humanos
17.
Am J Physiol Cell Physiol ; 317(4): C642-C654, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241985

RESUMO

Physical exercise (PE) has unquestionable beneficial effects on health, which likely extend into several organ-to-cell physiological processes. At the cell scale, endogenous mesenchymal stromal cells (MSCs) contribute to tissue repair, although their repair capacities may be insufficient in paucicellular or severely damaged tissues. For this reason, MSC transplantation holds great promise for tissue repair. With the goals of understanding if PE has beneficial effects on MSC biology and if PE potentiates their role in tissue repair, we reviewed literature reports regarding the effects of PE on MSC properties (specifically, proliferation, differentiation, and homing) and of a combination of PE and MSC transplantation on tissue repair (specifically neural, cartilage, and muscular tissues). Contradictory results have been reported; interpretation is complicated because various and different species, cell sources, and experimental protocols, specifically exercise programs, have been used. On the basis of these data, the effects of exercise on MSC proliferation and differentiation depend on exercise characteristics (type, intensity, duration, etc.) and on the characteristics of the tissue from which the MSCs were collected. For the in vitro studies, the level of strain (and other details of the mechanical stimulus), the time elapsed between the end of exposure to strain and MSC collection, the age of the donors, as well as the passage number at which the MSCs are evaluated also play a role. The combination of PE and MSC engraftment improves neural, cartilage, and muscular tissue recovery, but it is not clear whether the effects of MSCs and exercise are additive or synergistic.


Assuntos
Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Proliferação de Células/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Exercício Físico/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
18.
Eur Radiol Exp ; 3(1): 17, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30972589

RESUMO

BACKGROUND: To better understand bone fragility in type 2 diabetes mellitus and define the contribution of microcomputed tomography (micro-CT) to the evaluation of bone microarchitecture and vascularisation, we conducted an in vitro preliminary study on the femur of Zucker diabetic fatty (ZDF) rats and Zucker lean (ZL) rats. We first analysed bone microarchitecture, then determined whether micro-CT allowed to explore bone vascularisation, and finally looked for a link between these parameters. METHODS: Eight ZDF and six ZL rats were examined for bone microarchitecture (group 1), and six ZDF and six ZL rats were studied for bone vascularisation after Microfil® perfusion which is a radiopaque casting agent (group 2). In group 1, we used micro-CT to examine the trabecular and cortical bone microarchitecture of the femoral head, neck, shaft, and distal metaphysis. In group 2, micro-CT was used to study the blood vessels in the head, neck, and distal metaphysis. RESULTS: Compared to ZL rats, the ZDF rats exhibited significantly lower trabecular bone volume and number and higher trabecular separation in the three locations (p = 0.02, p = 0.02, p = 0.003). Cortical porosity was significantly higher in the ZDF rats at the neck and shaft (p = 0.001 and p = 0.005). We observed a dramatically poorer bone vascularisation in the femur of ZDF rats, especially in distal metaphysis (p < 0.047). CONCLUSIONS: Micro-CT demonstrated not only significant alterations in the bone microarchitecture of the femurs of ZDF rats, but also significant alterations in bone vascularisation. Further studies are required to demonstrate the causal link between poor vascularisation and impaired bone architecture.


Assuntos
Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Microtomografia por Raio-X , Animais , Osso Esponjoso/irrigação sanguínea , Osso Cortical/irrigação sanguínea , Estudos de Viabilidade , Fêmur/irrigação sanguínea , Ratos , Ratos Zucker
19.
Sci Rep ; 8(1): 17106, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459360

RESUMO

Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone. The number of the implanted h-iPSCs decreased with time and disappeared by 30 days post-implantation. In contrast, expression of the murine osteogenic genes at day 15 and 30 post-implantation provided, for the first time, evidence that the implanted h-iPSCs affected the observed outcomes via paracrine mechanisms. Supporting evidence was provided because supernatant conditioned media from h-iPSCs (h-iPSC CM), promoted the osteogenic differentiation of human mesenchymal stem cells (h-MSCs) in vitro. Specifically, h-iPSC CM induced upregulation of the BMP-2, BMP-4 and BMP-6 genes, and promoted mineralization of the extracellular matrix. Given the current interest in the use of h-iPSCs for regenerative medicine applications, our study contributes new insights into aspects of the mechanism underlying the bone promoting capability of h-iPSCs.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Comunicação Parácrina , Animais , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa , Engenharia Tecidual , Regulação para Cima
20.
EFORT Open Rev ; 3(8): 449-460, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30237903

RESUMO

Skin and bone share similarities in terms of biochemical composition.Some authors have hypothesized that their properties could evolve concomitantly with age, allowing the estimation of the parameters of one from those of the other.We performed a systematic review of studies reporting the correlation between skin and bone parameters in women with postmenopausal osteoporosis.Fourteen studies - including 1974 patients - were included in the review.Three of these studies included two groups of participants - osteoporotic and non-osteoporotic - in order to compare skin parameters between them: two studies found a significant difference between the two groups and one did not.Eleven of these studies included one population of interest and compared its skin and bone parameters in a continuous manner: eight studies compared dermal thickness to bone mineral density (seven found a significant correlation [R = 0.19-0.486] and one did not); two studies compared skin elasticity to bone mineral density (both found a significant correlation [R = 0.44-0.57); and one study compared skin collagen to bone mineral density and found a significant correlation (R = 0.587).It can be assumed that the estimation of skin alterations from ageing could help in estimating concomitant bone alterations. Cite this article: EFORT Open Rev 2018;3:449-460. DOI: 10.1302/2058-5241.3.160088.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...