Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214662

RESUMO

The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.


Assuntos
Micotoxinas , Triticum , Ascomicetos , Interações Hospedeiro-Patógeno/genética , Micotoxinas/genética , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Homologia Estrutural de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
2.
Plant Pathol J ; 36(3): 218-230, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32547338

RESUMO

Net blotch of barley caused by Pyrenophora teres (Died.) Drechsler, is one of the most destructive diseases on barley in Algeria. It occurs in two forms: P. teres f. teres and P. teres f. maculata. A total of 212 isolates, obtained from 58 fields sampled in several barley growing areas, were assessed for fungicide sensitivity by target gene analysis. F129L and G137R mitochondrial cytochrome b substitution associated with quinone outside inhibitors (QoIs) resistance, and succinate dehydrogenase inhibitors (SDHIs) related mutations (B-H277, C-N75S, C-G79R, C-H134R, and C-S135R), were analyzed by pyrosequencing. In vitro sensitivity of 45 isolates, towards six fungicides belonging to three chemical groups (QoI, demethylase inhibitor, and SDHI) was tested by microtiter technique. Additionally, sensitivity towards three fungicides (azoxystrobin, fluxapyroxad, and epoxiconazole) was assessed in planta under glasshouse conditions. All tested isolates were QoI-sensitive and SDHI-sensitive, no mutation that confers resistance was identified. EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.

3.
Plant Pathol J ; 34(2): 139-142, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628820

RESUMO

Pyrenophoratritici-repentis is the causal agent of tan spot. According to their ability to produce necrosis and/or chlorosis on a set of four differential bread wheats, the isolates of this fungus are currently grouped into eight races. When durum wheat genotypes were added to the differential set, a new virulence type was identified in Algeria. The isolates showing this virulence pattern are unable to attack bread wheat while they cause necrosis in durum genotypes. In this work, characterization of those isolates was based on pathological and molecular aspects. This included inoculation of bread and durum wheat, and virulence gene analysis using PCR and sequencing. The results showed that all isolates caused a resistance on all bread wheats of the differential set, while they produced necrosis in durum. ToxA and ToxB genes were amplified in all isolates, whereas toxb was absent. Sequence analysis for both genes showed no differences with those found in the two functional genes. The presence of two genes, ToxA and ToxB, despite the absence of symptoms usually caused by their products, suggests the existence of a new homologous for these two genes yet unknown. The presence of ToxA in the isolate unable to produce necrosis in Glenlea is reported for the first time.

4.
Plant Pathol J ; 33(2): 109-117, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28381957

RESUMO

Tan spot caused by the fungus Pyrenophora triticirepentis is a serious disease of wheat, which is on increase in recent years in Mediterranean region. In the field this fungus produces a diamond-shaped necrotic lesions with a yellow halo on wheat foliage. The objective of this study was to characterize and compare several monospore isolates of P. tritici-repentis collected from different infected wheat fields in various locations of Algeria, and find the morphological differences between them, if any. The results revealed wide morphologically variation among the isolates based on colony colors and texture, mycelial radial growth and conidial size.

5.
Plant Pathol J ; 30(4): 437-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25506309

RESUMO

A fungus Pyrenophora tritici-repentis induces tan spot of wheat which is a foliar disease that causes yield loss to wheat crops worldwide. In this study, a new, simple and non-costly technique was performed to produce the sexual stage of this fungus in culture, within 9 weeks using wheat straw. This protocol will be helpful to researchers studying the biology of sexual stage development, disease epidemiology and genetics of this fungus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...