Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1796: 67-84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856047

RESUMO

Cell wall degradation by cellulases is extensively explored owing to its potential contribution to biofuel production. The cellulosome is an extracellular multienzyme complex that can degrade the plant cell wall very efficiently, and cellulosomal enzymes are therefore of great interest. The cellulosomal cellulases are defined as enzymes that contain a dockerin module, which can interact with a cohesin module contained in multiple copies in a noncatalytic protein, termed scaffoldin. The assembly of the cellulosomal cellulases into the cellulosomal complex occurs via specific protein-protein interactions. Cellulosome systems have been described initially only in several anaerobic cellulolytic bacteria. However, owing to ongoing genome sequencing and metagenomic projects, the discovery of novel cellulosome-producing bacteria and the description of their cellulosomal genes have dramatically increased in the recent years. In this chapter, methods for discovery of novel cellulosomal cellulases from a DNA sequence by bioinformatics and biochemical tools are described. Their biochemical characterization is also described, including both the enzymatic activity of the putative cellulases and their assembly into mature designer cellulosomes.


Assuntos
Bioquímica/métodos , Celulases/metabolismo , Celulossomas/metabolismo , Genômica/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/genética , Celulases/química , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Biologia Computacional , Sequência Conservada , Genoma Bacteriano , Filogenia , Ruminococcus/enzimologia , Ruminococcus/genética , Coesinas
2.
Environ Microbiol ; 19(1): 185-197, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712009

RESUMO

The cellulosome is an extracellular multi-enzyme complex that is considered one of the most efficient plant cell wall-degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre-rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra-deep fibre-adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin-containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.


Assuntos
Bactérias/isolamento & purificação , Celulossomas/enzimologia , Microbioma Gastrointestinal , Filogenia , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Celulossomas/genética , Metagenoma , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
3.
Environ Microbiol ; 18(2): 542-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26347002

RESUMO

Ruminococcus champanellensis is considered a keystone species in the human gut that degrades microcrystalline cellulose efficiently and contains the genetic elements necessary for cellulosome production. The basic elements of its cellulosome architecture, mainly cohesin and dockerin modules from scaffoldins and enzyme-borne dockerins, have been characterized recently. In this study, we cloned, expressed and characterized all of the glycoside hydrolases that contain a dockerin module. Among the 25 enzymes, 10 cellulases, 4 xylanases, 3 mannanases, 2 xyloglucanases, 2 arabinofuranosidases, 2 arabinanases and one ß-glucanase were assessed for their comparative enzymatic activity on their respective substrates. The dockerin specificities of the enzymes were examined by ELISA, and 80 positives out of 525 possible interactions were detected. Our analysis reveals a fine-tuned system for cohesin-dockerin specificity and the importance of diversity among the cohesin-dockerin sequences. Our results imply that cohesin-dockerin pairs are not necessarily assembled at random among the same specificity types, as generally believed for other cellulosome-producing bacteria, but reveal a more organized cellulosome architecture. Moreover, our results highlight the importance of the cellulosome paradigm for cellulose and hemicellulose degradation by R. champanellensis in the human gut.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulose/metabolismo , Celulossomas/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Microbioma Gastrointestinal/fisiologia , Ruminococcus/enzimologia , Glicosídeo Hidrolases/metabolismo , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Ruminococcus/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...