Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38528735

RESUMO

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Poluentes Químicos da Água , Éter , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Éteres , Alcanossulfonatos , Etil-Éteres , Digestão , Estresse Oxidativo
2.
J Hazard Mater ; 453: 131437, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086670

RESUMO

Photocatalytic degradation of long-chain perfluorocarboxylic acid (PFCA) water contaminants has been reported for numerous of semiconductors, including composite TiO2 particles decorated with graphitic carbon co-catalysts. While pristine TiO2 degrades PFCAs inefficiently, the carbon components purportedly enhance activity due to their conductive nature and resultant charge separation enhancement. Yet herein, we present evidence that the catalytic activity of a graphene oxide (GO)-TiO2 composite from the literature arose not due to from charge separation, but to a unique mode of PFCA adsorption occurring at the interface of TiO2 and hydrophobic GO. Photocatalytic degradation rates by GO-TiO2 were compared to those of composites containing nonconductive polymer microparticles (polyethylene, polytetrafluoroethylene). Results showed that polymer-TiO2 composites performed as well as GO-TiO2 in degrading both perfluorooctanoic acid and oxalate, a common hole scavenger. Thus, the enhanced activity may occur for any TiO2-hydrophobic interface, regardless of co-catalyst conductivity. Furthermore, compared to an unmodified reference catalyst, chain length dependence of PFCA degradation by a polymer-TiO2 composite was found to be less severe, with greater activity toward short-chain species indicating enhanced adsorption behavior. Potential adsorption mechanisms are presented, along with broader implications toward improving the applicability of heterogeneous processes toward a wider range of perfluoroalkyl contaminants.

3.
ACS Appl Mater Interfaces ; 15(17): 20854-20864, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083368

RESUMO

The discovery of synthetic Bi3O(OH)(PO4)2 [BOHP] and its application toward photocatalytic oxidation of the water contaminant perfluorooctanoic acid (PFOA) have prompted further interest in development. Despite its high activity toward PFOA degradation, the scarce appearance in the literature and lack of research have left a knowledge gap in the understanding of BOHP synthesis, formation, and photocatalytic activity. Herein, we explore the crystallization of BOHP microparticles via hydrothermal syntheses, focusing on the influence of ions and organics present in the reaction solution when using different hydroxide amendments (NaOH, NH4OH, NMe4OH, and NEt4OH). To better understand the unique structure-activity aspects of BOHP, the related bismuth oxy phosphate (BOP) structural family was also explored, including A-BOP (A = Na+ and K+) and M-BOP derivatives (M = Ca2+, Sr2+, and Pb2+). Results from materials characterization, including X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, indicated that the crystal structure, morphology, and atomic composition were significantly influenced by solution pH, inorganic metal cations (Na+, K+, Ca2+, Sr2+, and Pb2+), and organic amines. Experiments involving ultraviolet photocatalytic destruction of PFOA by a BOHP suspension revealed that catalytic activity was influenced by the choice of reagents and their variable effect on surface facet growth and crystal defects in the resulting microparticles. Together, this work provides a strategy for crystal facet and surface defect engineering with the potential to expand to other metal oxides within the hydrothermal system.

4.
One Earth ; 6(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38264630

RESUMO

Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.

5.
Environ Sci Technol ; 55(20): 14146-14155, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34618445

RESUMO

Omega-hydroperfluorocarboxylates (ω-HPFCAs, HCF2-(CF2)n-1-COO-) are commercially available in bulk quantities and have been applied in agrochemicals, fluoropolymer production, and semiconductor coating. In this study, we used kinetic measurements, theoretical calculations, model compound experiments, and transformation product analyses to reveal novel mechanistic insights into the reductive and oxidative transformation of ω-HPFCAs. Like perfluorocarboxylates (PFCAs, CF3-(CF2)n-1-COO-), the direct linkage between HCnF2n- and -COO- enables facile degradation under UV/sulfite treatment. To our surprise, the presence of the H atom on the remote carbon makes ω-HPFCAs more susceptible than PFCAs to decarboxylation (i.e., yielding shorter-chain ω-HPFCAs) and less susceptible to hydrodefluorination (i.e., H/F exchange). Like fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-), the C-H bond in HCF2-(CF2)n-1-COO- allows hydroxyl radical oxidation and limited defluorination. While FTCAs yielded PFCAs in all chain lengths, ω-HPFCAs only yielded -OOC-(CF2)n-1-COO- (major) and -OOC-(CF2)n-2-COO- (minor) due to the unfavorable ß-fragmentation pathway that shortens the fluoroalkyl chain. We also compared two treatment sequences-UV/sulfite followed by heat/persulfate and the reverse-toward complete defluorination of ω-HPFCAs. The findings will benefit the treatment and monitoring of H-containing per- and polyfluoroalkyl substance (PFAS) pollutants as well as the design of future fluorochemicals.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Ácidos Carboxílicos , Radical Hidroxila , Oxirredução
6.
Environ Sci Technol ; 55(10): 7052-7062, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33950686

RESUMO

The UV-sulfite reductive treatment using hydrated electrons (eaq-) is a promising technology for destroying perfluorocarboxylates (PFCAs, CnF2n+1COO-) in any chain length. However, the C-H bonds formed in the transformation products strengthen the residual C-F bonds and thus prevent complete defluorination. Reductive treatments of fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-) and sulfonates (FTSAs, CnF2n+1-CH2CH2-SO3-) are also sluggish because the ethylene linker separates the fluoroalkyl chain from the end functional group. In this work, we used oxidation (Ox) with hydroxyl radicals (HO•) to convert FTCAs and FTSAs to a mixture of PFCAs. This process also cleaved 35-95% of C-F bonds depending on the fluoroalkyl chain length. We probed the stoichiometry and mechanism for the oxidative defluorination of fluorotelomers. The subsequent reduction (Red) with UV-sulfite achieved deep defluorination of the PFCA mixture for up to 90%. The following use of HO• to oxidize the H-rich residues led to the cleavage of the remaining C-F bonds. We examined the efficacy of integrated oxidative and reductive treatment of n = 1-8 PFCAs, n = 4,6,8 perfluorosulfonates (PFSAs, CnF2n+1-SO3-), n = 1-8 FTCAs, and n = 4,6,8 FTSAs. A majority of structures yielded near-quantitative overall defluorination (97-103%), except for n = 7,8 fluorotelomers (85-89%), n = 4 PFSA (94%), and n = 4 FTSA (93%). The results show the feasibility of complete defluorination of legacy PFAS pollutants and will advance both remediation technology design and water sample analysis.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Alcanossulfonatos , Ácidos Carboxílicos , Oxirredução
7.
Environ Sci Technol ; 54(4): 2489-2499, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31999101

RESUMO

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.


Assuntos
Ácidos Carboxílicos , Fluorocarbonos , Elétrons , Éter , Éteres
8.
Environ Sci Technol ; 53(7): 3718-3728, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30874441

RESUMO

This study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C nF2 n+1-COO- with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C nF2 n+1-CH2CH2-COO- and C nF2 n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Elétrons , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...