Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(26): 14521-14529, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906535

RESUMO

Chemosensory membrane proteins such as G-protein-coupled receptors (GPCRs) drive flavor perception of food formulations. To achieve this, a detailed understanding of the structure and function of these membrane proteins is needed, which is often limited by the extraction and purification methods involved. The proposed nanodisc methodology helps overcome some of these existing challenges such as protein stability and solubilization along with their reconstitution from a native cell-membrane environment. Being well-established in structural biology procedures, nanodiscs offer this elegant solution by using, e.g., a membrane scaffold protein (MSP) or styrene-maleic acid (SMA) polymer, which interacts directly with the cell membrane during protein reconstitution. Such derived proteins retain their biophysical properties without compromising the membrane architecture. Here, we seek to show that these lipidic systems can be explored for insights with a focus on chemosensory membrane protein morphology and structure, conformational dynamics of protein-ligand interactions, and binding kinetics to answer pending questions in flavor research. Additionally, the compatibility of nanodiscs across varied (labeled or label-free) techniques offers significant leverage, which has been highlighted here.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/química , Nanoestruturas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Aromatizantes/química , Humanos
2.
Nat Food ; 5(4): 281-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605131

RESUMO

Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.


Assuntos
Microscopia de Força Atômica , Boca , Percepção Gustatória , Humanos , Paladar/fisiologia , Percepção Gustatória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...