Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21290, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494507

RESUMO

The El Niño Southern Oscillation (ENSO) is the strongest source of interannual global climate variability, and extreme ENSO events are projected to increase in frequency under climate change. Interannual variability in the Coral Sea circulation has been associated with ENSO, although uncertainty remains regarding ENSO's influence on hydrodynamics and larval dispersal in the adjacent Great Barrier Reef (GBR). We investigated larval connectivity during ENSO events from 2010 to 2017 throughout the GBR, based on biophysical modelling of a widespread predatory reef fish, Lutjanus carponotatus. Our results indicate a well-connected system over the study period with high interannual variability in inter-reef connectivity associated with ENSO. Larval connectivity patterns were highly correlated to variations in the Southern Oscillation Index (SOI). During El Niño conditions and periods of weak SOI, larval dispersal patterns were predominantly poleward in the central and southern regions, reversing to a predominant equatorward flow during very strong SOI and extreme La Niña conditions. These ENSO-linked connectivity patterns were associated with positive connectivity anomalies among reefs. Our findings identify ENSO as an important source of variation in larval dispersal and connectivity patterns in the GBR, which can influence the stability of population dynamics and patterns of biodiversity in the region.


Assuntos
Antozoários , El Niño Oscilação Sul , Animais , Larva , Mudança Climática , Dinâmica Populacional
2.
Glob Chang Biol ; 28(11): 3515-3536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35293658

RESUMO

Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.


Assuntos
Ecossistema , Peixes , Animais , Invertebrados , Larva , Oceanos e Mares
3.
Ann Rev Mar Sci ; 13: 313-342, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976730

RESUMO

Ocean temperature variability is a fundamental component of the Earth's climate system, and extremes in this variability affect the health of marine ecosystems around the world. The study of marine heatwaves has emerged as a rapidly growing field of research, given notable extreme warm-water events that have occurred against a background trend of global ocean warming. This review summarizes the latest physical and statistical understanding of marine heatwaves based on how they are identified, defined, characterized, and monitored through remotely sensed and in situ data sets. We describe the physical mechanisms that cause marine heatwaves, along with their global distribution, variability, and trends. Finally, we discuss current issues in this developing research area, including considerations related to thechoice of climatological baseline periods in defining extremes and how to communicate findings in the context of societal needs.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Temperatura Alta , Modelos Teóricos , Água do Mar/química , Conjuntos de Dados como Assunto , Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Aquecimento Global , Movimentos da Água
4.
Sci Rep ; 10(1): 19359, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168858

RESUMO

Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.

5.
Nat Commun ; 10(1): 2624, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201309

RESUMO

Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982-2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe - an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies.

6.
Nat Commun ; 9(1): 1324, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636482

RESUMO

Heatwaves are important climatic extremes in atmospheric and oceanic systems that can have devastating and long-term impacts on ecosystems, with subsequent socioeconomic consequences. Recent prominent marine heatwaves have attracted considerable scientific and public interest. Despite this, a comprehensive assessment of how these ocean temperature extremes have been changing globally is missing. Using a range of ocean temperature data including global records of daily satellite observations, daily in situ measurements and gridded monthly in situ-based data sets, we identify significant increases in marine heatwaves over the past century. We find that from 1925 to 2016, global average marine heatwave frequency and duration increased by 34% and 17%, respectively, resulting in a 54% increase in annual marine heatwave days globally. Importantly, these trends can largely be explained by increases in mean ocean temperatures, suggesting that we can expect further increases in marine heatwave days under continued global warming.

7.
Nat Commun ; 8: 16101, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706247

RESUMO

The Tasman Sea off southeast Australia exhibited its longest and most intense marine heatwave ever recorded in 2015/16. Here we report on several inter-related aspects of this event: observed characteristics, physical drivers, ecological impacts and the role of climate change. This marine heatwave lasted for 251 days reaching a maximum intensity of 2.9 °C above climatology. The anomalous warming is dominated by anomalous convergence of heat linked to the southward flowing East Australian Current. Ecosystem impacts range from new disease outbreaks in farmed shellfish, mortality of wild molluscs and out-of-range species observations. Global climate models indicate it is very likely to be that the occurrence of an extreme warming event of this duration or intensity in this region is respectively ≥330 times and ≥6.8 times as likely to be due to the influence of anthropogenic climate change. Climate projections indicate that event likelihoods will increase in the future, due to increasing anthropogenic influences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...