Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Econ Entomol ; 117(3): 1032-1040, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38625049

RESUMO

3-Hydroxyhexan-2-one (3-C6-ketol) has emerged as the most conserved pheromone structure within the beetle family Cerambycidae. In this study, we report the sex-specific production of this compound by males of 12 species of South American cerambycid beetles. Males of Chrysoprasis chalybea Redtenbacher and Mallosoma zonatum (Sahlberg) (Tribe Dichophyiini), and Ambonus lippus (Germar), Eurysthea hirta (Kirby), Pantonyssus nigriceps Bates, Stizocera plicicollis (Germar), and Stizocera tristis (Guérin-Méneville) (Elaphidiini) produced 3R-C6-ketol as a single component, whereas males of Neoclytus pusillus (Laporte & Gory) (Clytini), Aglaoschema concolor (Gounelle), Orthostoma abdominale (Gyllenhal) (Compsocerini), Dorcacerus barbatus (Olivier), and Retrachydes thoracicus thoracicus (Olivier) (Trachyderini) produced 3R-C6-ketol, along with lesser amounts of other compounds. In field trials testing 8 known cerambycid pheromone compounds, C. chalybea, E. hirta, and R. t. thoracicus were attracted in significant numbers to traps baited with 3-C6-ketol. A second field experiment provided support for the strategy of using the attraction of cerambycid species to test lures as a method of providing leads to their likely pheromone components. Because both sexes are attracted to these aggregation-sex pheromones, live beetles can be obtained from baited traps to verify they produce the compound(s) to which they were attracted, that is, that the compounds are indeed pheromone components.


Assuntos
Besouros , Animais , Masculino , Feminino , Hexanonas/farmacologia , Feromônios/farmacologia , Atrativos Sexuais/farmacologia , Especificidade da Espécie , América do Sul
2.
Sci Rep ; 14(1): 455, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172384

RESUMO

The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Rhizobiaceae , Atrativos Sexuais , Wolbachia , Feminino , Masculino , Animais , Hemípteros/fisiologia , Atrativos Sexuais/farmacologia , Brasil , Citrus/microbiologia , Rhizobiaceae/fisiologia , Acetatos , Doenças das Plantas/microbiologia
3.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994626

RESUMO

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Assuntos
Solanum lycopersicum , Solanum , Animais , Polinização , Flores , Plantas , Pólen , Solo
4.
Ecol Evol ; 13(8): e10416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575593

RESUMO

Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.

5.
Planta ; 257(4): 76, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894799

RESUMO

MAIN CONCLUSION: Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.


Assuntos
Mariposas , Solanum lycopersicum , Solanum , Animais , Herbivoria , Larva , Nitrogênio
6.
Naturwissenschaften ; 110(1): 3, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700962

RESUMO

Cyclocephaline beetles are flower visitors attracted primarily by major floral volatiles. Addressing the identity of these volatile compounds is pivotal for understanding the evolution of plant-beetle interactions. We report the identification and field testing of the attractant volatiles from trumpet flowers, Brugmansia suaveolens (Willd.) Sweet (Solanaceae), for the beetle Cyclocephala paraguayensis Arrow (Melolonthidae: Dynastinae). Analysis of headspace floral volatiles revealed 19 compounds, from which eucalyptol (57%), methyl benzoate (16%), and ß-myrcene (6%) were present in the largest amounts, whereas E-nerolidol in much lesser amounts (1.8%). During a first-field assay, traps baited with Mebe alone or blended with the other two major compounds attracted more beetles than myrcene and eucalyptol alone, which did not differ from the negative controls. In a second assay, Mebe and nerolidol attracted more beetles as a blend than individually. Nerolidol was more attractive than Mebe, and all treatments attracted more beetles than negative controls. The number of attracted beetles in the Mebe-nerolidol blend was greater than the combined sum of beetles attracted to these compounds alone, suggesting a synergistic interaction. The attraction of C. paraguayensis by trumpet-flower volatiles supports the beetle's extended preference for sphingophilous plants, especially when cantharophilous (beetle-pollinated) flowers are lacking. This phenomenon, thus, might have contributed to the widespread occurrence of this beetle throughout the Brazilian biomes.


Assuntos
Besouros , Solanaceae , Animais , Eucaliptol , Flores , Feromônios
7.
J Chem Ecol ; 48(5-6): 569-582, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35501536

RESUMO

A novel trisubstituted tetrahydropyran was isolated and identified from the sex-specific volatiles produced by males of the cerambycid beetle Macropophora accentifer (Olivier), a serious pest of citrus and other fruit crops in South America. The compound was the major component in the headspace volatiles, and it was synthesized in racemic form. However, in field trials, the racemate was only weakly attractive to beetles of both sexes, suggesting that attraction might be inhibited by the presence of the "unnatural" enantiomer in the racemate. Alternatively, the male-produced volatiles contained a number of minor and trace components, including a compound tentatively identified as a homolog of the major component, as well as a number of unsaturated 8-carbon alcohols and aldehydes. Further work is required to conclusively identify and synthesize these minor components, to determine whether one or more of them are crucial components of the active pheromone blend for this species.


Assuntos
Besouros , Atrativos Sexuais , Aranhas , Aldeídos , Animais , Feminino , Masculino , Feromônios , Atrativos Sexuais/farmacologia
8.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35333339

RESUMO

Some pathogens can manipulate their host plants and insects to optimize their fitness, increasing the attraction of insects to the infected plant in ways that facilitate pathogen acquisition. In tropical American sugarcane crops, the fungus Colletotrichum falcatum, the red rot causal agent, usually occurs in association with the sugarcane borer Diatraea saccharalis, resulting in large losses of this crop. Considering this association, we aimed to identify the effects of C. falcatum on D. saccharalis host preference and performance as well as the effect of this insect on C. falcatum sugarcane infection. Here, we show that the fungus C. falcatum modulates D. saccharalis behavior to its own benefit. More specifically, C. falcatum-infected sugarcane plants showed a dramatic increase in VOCs, luring D. saccharalis females to lay eggs on these plants. Therefore, sugarcane infection by the fungus C. falcatum increased in cooccurrence with insect herbivory, benefiting the pathogen when associated with D. saccharalis.


Assuntos
Colletotrichum , Mariposas , Saccharum , Animais , Grão Comestível , Feminino , Insetos , Saccharum/microbiologia
9.
J Chem Ecol ; 47(12): 941-949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34532812

RESUMO

Here, we study the pheromone chemistry of two South American cerambycid beetle species, and their behavioral responses to candidate pheromone components. Adult males of Stizocera phtisica Gounelle (subfamily Cerambycinae: tribe Elaphidiini) produced a sex-specific blend of (R)-3-hydroxyhexan-2-one with lesser amounts of 3-methylthiopropan-1-ol. In field bioassays, traps baited with racemic 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol did not catch conspecific beetles, but did catch both sexes of a sympatric species, Chydarteres dimidiatus dimidiatus (F.) (Cerambycinae: Trachyderini). We found that males of this species also produce (R)-3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol, and small amounts of 2-phenylethanol. Subsequent bioassays with these compounds showed that a blend of 3-hydroxyhexan-2-one and 3-methylthiopropan-1-ol constitutes the aggregation-sex pheromone of C. d. dimidiatus, with 2-phenylethanol not influencing the attraction of conspecifics. During the field bioassays, six other species in the Cerambycinae also were caught in significant numbers, including Aglaoschema ventrale (Germar) (tribe Compsocerini), congeners Chrysoprasis aurigena (Germar), Chrysoprasis linearis Bates, and an unidentified Chrysoprasis species (Dichophyiini), and Cotyclytus curvatus (Germar) and Itaclytus olivaceus (Laporte & Gory) (both Clytini), suggesting that one or more of the compounds tested are also pheromone components for these species.


Assuntos
Besouros/efeitos dos fármacos , Feromônios/farmacologia , Animais , Besouros/fisiologia , Hexanonas/farmacologia , Masculino , América do Sul , Especificidade da Espécie
10.
ISME J ; 15(12): 3522-3533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34127802

RESUMO

Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.


Assuntos
Insetos , Mariposas , Animais , Fungos , Herbivoria , Humanos , Doenças das Plantas , Plantas
11.
Environ Entomol ; 50(3): 599-604, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33724303

RESUMO

An increasing body of evidence indicates that cerambycid beetles native to different continents may share pheromone components, suggesting that these compounds arose as pheromone components early in the evolution of the family. Here, we describe the identification and field testing of the pheromone blends of two species in the subfamily Cerambycinae that share 2-nonanone as an important component of their male-produced aggregation-sex pheromones, the South American Stizocera consobrina Gounelle (tribe Elaphidiini) and the North American Heterachthes quadrimaculatus Haldeman (tribe Neoibidionini). Along with 2-nonanone, males of S. consobrina also produce 1-(1H-pyrrol-2-yl)-1,2-propanedione, whereas males of H. quadrimaculatus produce 10-methyldodecanol. Field bioassays conducted in Brazil (targeting S. consobrina) and Illinois (targeting H. quadrimaculatus) demonstrated that adults of both species were attracted only by the blends of both their pheromone components, and not to the individual components. The use of the pyrrole as a critical component for the former species is further evidence that this compound is a common pheromone structure among cerambycines in different biogeographical regions of the world.


Assuntos
Besouros , Atrativos Sexuais , Animais , Brasil , Illinois , Cetonas , Masculino , Feromônios
12.
Insects ; 11(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252447

RESUMO

We describe the identification, synthesis, and field-testing of aggregation-sex pheromones, or likely pheromone candidates, of seven species of South American cerambycid beetles in the subfamily Cerambycinae, of the tribes Eburiini and Neoibidionini. Analyses of extracts of volatiles released by adult males revealed that Eburodacrys dubitata White produce 11-methyltridecanal, whereas the males of Eburodacrys assimilis Gounelle, Eburodacrys flexuosa Gounelle, and Eburodacrys lenkoi Napp and Martins produce blends of this compound, along with its analog 10-methyldodecanal. In contrast, males of Compsibidion graphicum (Thomson) and Compsibidion sommeri (Thomson) produce blends of 10-methyldodecanal and its corresponding alcohol 10-methyldodecanol. The results from field bioassays with synthetic compounds showed that each species was specifically attracted to traps containing their reconstructed pheromone blend. However, E. assimilis was not trapped, possibly due to inhibition by non-natural enantiomers in the racemic test compounds. During the trials for the Compsibidion species, adults of another cerambycid species, Tetraopidion mucoriferum (Thomson), were captured in significant numbers in traps baited with 10-methyldodecanol, suggesting that this compound is a pheromone component for this species. This study demonstrates another case of conservation of pheromone structures within South American cerambycid species. It also highlights how blends of closely related structures, differing only in chain length or functional group, make the evolution of species-specific pheromone channels possible.

13.
PLoS One ; 15(4): e0231005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243466

RESUMO

Silicon (Si) supplementation is well-known for enhancing plant resistance to insect pests, however, only recently studies revealed that Si accumulation in the plant not only confers a mechanical barrier to insect feeding, but also primes jasmonic acid-dependent defenses. Here, we examined whether Si supplementation alters wheat volatile emissions that influence the bird cherry-oat aphid (Rhopalosiphum padi) olfactory preference and the aphid parasitoid Lysiphlebus testaceipes. Even though Si accumulation in wheat did not impact aphid performance, we found that R. padi preferred constitutive volatiles from-Si wheat over those emitted by +Si wheat plants. In Y-tube olfactometer bioassays, the parasitoid was attracted to volatiles from +Si uninfested wheat, but not to those from-Si uninfested wheat. +Si and-Si aphid-infested plants released equally attractive blends to the aphid parasitoid; however, wasps were unable to distinguish +Si uninfested plant odors from those of aphid-infested treatments. GC-MS analyses revealed that +Si uninfested wheat plants emitted increased amounts of a single compound, geranyl acetone, compared to -Si uninfested wheat, but similar to those emitted by aphid-infested treatments. By contrast, Si supplementation in wheat did not alter composition of aphid-induced plant volatiles. Our results show that changes in wheat volatile blend induced by Si accumulation mediate the non-preference behavior of the bird cherry-oat aphid and the attraction of its parasitoid L. testaceipes. Conversely to the literature, Si supplementation by itself seems to work as an elicitor of induced defenses in wheat, and not as a priming agent.


Assuntos
Afídeos , Silício/farmacologia , Triticum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Vespas , Animais , Afídeos/fisiologia , Controle de Insetos/métodos , Silício/metabolismo , Olfato , Triticum/efeitos dos fármacos , Triticum/metabolismo
14.
Braz J Microbiol ; 51(3): 1151-1157, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31898244

RESUMO

The development of insects is strongly influenced by their resident microorganisms. Symbionts play key roles in insect nutrition, reproduction, and defense. Bacteria are important partners due to the wide diversity of their biochemical pathways that aid in the host development. We present evidence that the foam produced by nymphs of the spittlebug Mahanarva fimbriolata harbors a diversity of bacteria, including some that were previously reported as defensive symbionts of insects. Analysis of the microbiomes in the nymph gut and the soil close to the foam showed that the microorganisms in the foam were more closely related to those in the gut than in the soil, suggesting that the bacteria are actively introduced into the foam by the insect. Proteobacteria, Actinobacteria, and Acidobacteria were the predominant groups found in the foam. Since members of Actinobacteria have been found to protect different species of insects by producing secondary metabolites with antibiotic properties, we speculate that the froth produced by M. fimbriolata may aid in defending the nymphs against entomopathogenic microorganisms.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Hemípteros/microbiologia , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Hemípteros/fisiologia , Ninfa/microbiologia , Simbiose
15.
Sci Rep ; 9(1): 12920, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501479

RESUMO

The Asian citrus psyllid (ACP) is a vector of a pathogen associated with greening and thus a major problem in citriculture worldwide. Lures are much needed for improving ACP trapping systems for monitoring populations and surveillance. Previously, we have identified acetic acid as a putative sex pheromone and measured formic acid- and propionic acid-elicited robust electroantennographic responses. We have now thoroughly examined in indoor behavioral assays (4-way olfactometer) and field tests the feasibility of these three semiochemicals as potential lures for trapping ACP. Formic acid, acetic acid, and propionic acid at appropriate doses are male-specific attractants and suitable lures for ACP traps, but they do not act synergistically. An acetic acid-based homemade lure, prepared by impregnating the attractant in a polymer, was active for a day. A newly developed slow-release formulation had equal performance but lasted longer, thus leading to an important improvement in ACP trap capture at low population densities.


Assuntos
Ácido Acético , Citrus/parasitologia , Hemípteros , Feromônios , Ácido Acético/química , Animais , Comportamento Animal , Brasil , California , Masculino , Feromônios/química , Compostos Orgânicos Voláteis
16.
J Chem Ecol ; 44(12): 1115-1119, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306314

RESUMO

We describe the identification, synthesis, and field bioassays of a novel aggregation-sex pheromone produced by males of Susuacanga octoguttata (Germar), a South American cerambycid beetle. Analyses of extracts of headspace volatiles produced by adult beetles revealed a sex-specific compound emitted by males which was identified as (Z)-7-hexadecene by microchemical and spectroscopic analyses. The synthesized pheromone was attractive to beetles of both sexes in field trials. This unsaturated hydrocarbon motif is unprecedented among cerambycid pheromones identified to date. During field bioassays, we serendipitously discovered that adults of S. octoguttata trapped in two Brazilian biomes differed considerably in elytral markings, although males from both populations produced (Z)-7-hexadecene as an aggregation-sex pheromone.


Assuntos
Alcenos/síntese química , Besouros/fisiologia , Atrativos Sexuais/química , Alcenos/química , Alcenos/farmacologia , Animais , Besouros/química , Feminino , Masculino , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , América do Sul , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
17.
Sci Rep ; 8(1): 4729, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549300

RESUMO

Insects have evolved multiple mechanisms to adapt to variations in environmental temperatures, including postural control of solar input, variations in diurnal activity, external morphological structures and selecting/generating microhabitats. Foam produced by Mahanarva fimbriolata nymphs (also known as root spittlebugs) was found to aid in creating a constant thermal microhabitat despite environmental temperature fluctuations. The temperature within the foam was found to be similar to that of soil during the day and remained constant despite fluctuating external temperatures. In chemically analysing the composition of the foam, palmitic and stearic acids, carbohydrates and proteins were detected. These substances have previously been shown to act as a surfactant to stabilize and modulate foams. Since the immature ancestor of the spittlebug developed below ground, it is speculated that the foam may function as an 'extension' of the soil and, thus, may have enabled the spittlebug to emerge from the soil and adopt an epigean lifestyle.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal , Ecossistema , Células Espumosas/fisiologia , Hemípteros/fisiologia , Ninfa/fisiologia , Animais , Temperatura
18.
J Chem Ecol ; 44(3): 268-275, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29430578

RESUMO

During field screening trials conducted in Brazil in 2015, adults of both sexes of the cerambycid beetles Cotyclytus curvatus (Germar) and Megacyllene acuta (Germar) (subfamily Cerambycinae, tribe Clytini) were significantly attracted to racemic 3-hydroxyhexan-2-one and racemic 2-methylbutan-1-ol, chemicals which previously have been identified as male-produced aggregation-sex pheromones of a number of cerambycid species endemic to other continents. Subsequent analyses of samples of beetle-produced volatiles revealed that males of C. curvatus sex-specifically produce only (R)-3-hydroxyhexan-2-one, whereas males of M. acuta produce the same compound along with lesser amounts of (2S,3S)-2,3-hexanediol and (S)-2-methylbutan-1-ol. Follow-up field trials showed that both sexes of both species were attracted to synthetic reconstructions of their respective pheromones, confirming that males produce aggregation-sex pheromones. The minor pheromone components of M. acuta, (S)-2-methylbutan-1-ol and (2S,3S)-2,3-hexanediol, synergized attraction of that species, but antagonized attraction of C. curvatus to (R)-3-hydroxyhexan-2-one. Beetles of other cerambycine species also were attracted in significant numbers, including Chrysoprasis linearis Bates, Cotyclytus dorsalis (Laporte & Gory), and Megacyllene falsa (Chevrolat). Our results provide further evidence that 3-hydroxyhexan-2-one is a major component of attractant pheromones of numerous cerambycine species world-wide. Our results also highlight our increasing understanding of the crucial role of minor pheromone components in imparting species specificity to cerambycid pheromone blends, as is known to occur in numerous species in other insect families.


Assuntos
Besouros/efeitos dos fármacos , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Bioensaio , Feminino , Masculino , Compostos Orgânicos Voláteis/farmacologia
19.
Sci Rep ; 8(1): 455, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323263

RESUMO

Under laboratory conditions, mating activity in Asian citrus psyllid (ACP) started 4 days after emergence, peaked at day 7, and showed a clear window of activity starting 8 h into the photophase and extending through the first hour of the scotophase. We confirmed that ACP males are attracted to emanations from conspecific females. Traps loaded with a candidate compound enriched with female extract, lignoceryl acetate (24Ac), at various doses were active only after being deployed for several weeks in the field, suggesting that a degradation product, not the test compound, was the active ingredient(s). Lignocerol, a possible product of 24Ac degradation, was not active, whereas acetic acid, another possible degradation product, was found in the airborne volatile collections from lures matured under field conditions and detected in higher amounts in volatiles collected from females at the peak of mating activity than in male samples. Acetic acid elicited dose-dependent electroantennographic responses and attracted ACP males, but not females, in Y-type and 4-way olfactometers. Field tests showed that acetic acid-baited traps captured significantly more males than control traps. Surprisingly, captures of females in acetic acid-baited traps were also higher than in control traps, possibly because of physical stimuli emitted by captured males.


Assuntos
Hemípteros/fisiologia , Atrativos Sexuais/análise , Compostos Orgânicos Voláteis/análise , Ácido Acético/análise , Ácido Acético/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Citrus/parasitologia , Feminino , Hemípteros/metabolismo , Masculino , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Compostos Orgânicos Voláteis/metabolismo
20.
J Chem Ecol ; 44(1): 29-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29177897

RESUMO

Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.


Assuntos
Heterópteros/fisiologia , Mariposas/fisiologia , Solanum lycopersicum/química , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Heterópteros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/fisiologia , Solanum lycopersicum/metabolismo , Mariposas/crescimento & desenvolvimento , Ninfa/efeitos dos fármacos , Ninfa/fisiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Comportamento Predatório/efeitos dos fármacos , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...