Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 493(2-3): 112-6, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11287006

RESUMO

Arrestins are regulators of the active state of G-protein-coupled receptors. Towards elucidating the function of different arrestin subfamilies in sensory cells, we have isolated a novel arrestin 1, Am Arr1, from the UV photoreceptors of the neuropteran Ascalaphus macaronius. Am Arr1 forms a phylogenetic clade with antennal and visual Arr1 isoforms of invertebrates. Am Arr1 undergoes a light-dependent binding cycle to photoreceptor membranes, as reported earlier only for members of the arrestin 2 subfamily. This suggests a common control mechanism for the active state of invertebrate rhodopsins and G-protein-coupled receptors of antennal sensory cells. Furthermore, it implies that a strict correlation of distinct arrestin isoforms to distinct functions is not a general principle for invertebrate sensory cells.


Assuntos
Arrestinas/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Sequência de Aminoácidos , Animais , Arrestinas/genética , Clonagem Molecular , Proteínas de Ligação ao GTP/metabolismo , Genes de Insetos , Técnicas In Vitro , Insetos/genética , Insetos/metabolismo , Cinética , Dados de Sequência Molecular , Fosfoproteínas/genética , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Filogenia , Ligação Proteica/efeitos da radiação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Raios Ultravioleta
2.
Development ; 126(4): 607-16, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9895309

RESUMO

Opsin gene expression in the R7 and R8 photoreceptor cells of the Drosophila compound eye is highly coordinated. We have found that the R8 cell specific Rh5 and Rh6 opsins are expressed in non-overlapping sets of R8 cells, in a precise pairwise fashion with Rh3 and Rh4 in the R7 cells of individual ommatidia. Removal of the R7 cells in sevenless, boss or sina mutants, disrupts Rh5 expression and dramatically increases the number of Rh6-expressing R8 cells. This suggests that the expression of Rh5 may be induced by an Rh3-expressing R7 cell, whereas Rh6 expression is most likely a default state of the R8 cell. We found that the paired expression of opsin genes in the R7 and R8 cells occurs in a sevenless and boss independent manner. Furthermore, we found that the generation of both Rh3- and Rh4-expressing R7 cells can occur in the absence of an R8 cell. These results suggest that the specification of opsin expression in the R7 cells may occur autonomously, whereas the R7 photoreceptor cell may be responsible for regulating a binary developmental switch between induced and default cell-fates in the R8 cell.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Fotorreceptoras de Invertebrados/citologia , Receptores Proteína Tirosina Quinases , Receptores de Peptídeos , Opsinas de Bastonetes/genética , Sequência de Aminoácidos , Animais , Proteínas do Olho/genética , Imunoquímica , Glicoproteínas de Membrana/genética , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Fragmentos de Peptídeos/imunologia , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases
3.
Acta Anat (Basel) ; 162(2-3): 85-94, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9831754

RESUMO

Insight into the molecular basis of inherited photoreceptor cell degeneration has been rapidly evolving during the last decade. The Drosophila Rh1 rhodopsin gene was the first gene shown to cause retinal degeneration when mutated. Many more degeneration-causing mutations in genes encoding rhodopsin and other photoreceptor proteins have been isolated since then in both, Drosophila and humans. To date some 70 mutations of the Drosophila Rh1 gene have been isolated, most of them have been characterized at the molecular level, and more than 60% of them cause retinal degeneration. This review lists the known Rh1 mutations that cause retinal degeneration up to April 1998, gives an overview on the ultrastructural and biochemical correlates of photoreceptor cell degeneration, and suggests a system for the classification of degeneration-causing Rh1 mutations.


Assuntos
Drosophila melanogaster/genética , Mutação Puntual , Degeneração Retiniana/genética , Rodopsina/genética , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Genótipo , Dados de Sequência Molecular , Fenótipo , Células Fotorreceptoras de Invertebrados/patologia , Degeneração Retiniana/classificação , Degeneração Retiniana/patologia
4.
FEBS Lett ; 406(1-2): 6-10, 1997 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-9109375

RESUMO

By screening retinal cDNA libraries for photoreceptor-specifically expressed genes we have isolated and sequenced a cDNA clone encoding the rhodopsin (Rh6) of a subset of R8 photoreceptor cells of the Drosophila compound eye. Compared to the other visual pigments of Drosophila, this rhodopsin is equally homologous to Rh1 and Rh2 (51% amino acid identity) but shows only 32% and 33% amino acid identity with Rh3 and Rh4, respectively. The open reading frame codes for a protein of 369 amino acids (MW = 41691). The primary structure of Rh6 displays sites typical for rhodopsin molecules in general, for example, a chromophore binding site in transmembrane domain VII, sequence motifs in the intracellular loops 2 and 3 required for the binding of a heterotrimeric G-protein, and a glycosylation site near the N-terminus which seems to be important for protein transport and maturation. Since R8 cells are founder cells in the developing compound eye, the isolation of a rhodopsin gene expressed in these cells may aid the understanding of terminal differentiation of photoreceptor cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentos Biológicos/genética , Rodopsina/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
5.
EMBO J ; 16(7): 1600-9, 1997 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-9130705

RESUMO

The cytoplasmic surface of Drosophila melanogaster Rh1 rhodopsin (ninaE) harbours amino acids which are highly conserved among G-protein-coupled receptors. Site-directed mutations which cause Leu81Gln or Asn86Ile amino acid substitutions in the first cytoplasmic loop of the Rh1 opsin protein, are shown to block rhodopsin synthesis in the nascent, glycosylated state from which the mutant opsin is degraded rapidly. In mutants Leu81Gln and Asn86Ile, only 20-30% and <2% respectively, of functional rhodopsins are synthesized and transported to the photoreceptive membrane. Thus, conserved amino acids in opsin's cytoplasmic surface are a critical factor in the interaction of opsin with proteins of the rhodopsin processing machinery. Photoreceptor cells expressing mutant rhodopsins undergo age-dependent degeneration in a recessive manner.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/fisiologia , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Retina/fisiologia , Rodopsina/biossíntese , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila melanogaster/genética , Eletrorretinografia , Proteínas de Ligação ao GTP/metabolismo , Glicosilação , Humanos , Modelos Estruturais , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Opsinas de Bastonetes/biossíntese , Opsinas de Bastonetes/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica
6.
Eur J Biochem ; 216(1): 67-73, 1993 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8365418

RESUMO

An arrestin homolog (Arr2, 49-kDa protein) of blowfly (Calliphora erythrocephala) retinae undergoes light-dependent reversible binding to the photoreceptor membrane. In order to characterize this arrestin homolog and to study its function in a well-defined experimental system, we developed a purification scheme which used microvillar photoreceptor membranes as an affinity binding matrix. Additional purification steps included ammonium sulfate precipitation, gel filtration and binding to heparin-agarose. The molecular mass of purified Arr2, as judged by SDS/PAGE, is in the range 45-49 kDa. The isoelectric point, as judged by gel isoelectric focussing, is 8.7. Arr2 is specific to the retina, where it is subject to phosphorylation at multiple sites. Binding of purified Arr2 to isolated photoreceptor membranes efficiently activates the light-induced phosphorylation of visual pigment. Since the assay system used is deficient in rhodopsin phosphatase activity, the arrestin-stimulated phosphate incorporation into rhodopsin results solely from the activation of a protein kinase. Phosphorylation experiments with highly purified membrane preparations indicate that rhodopsin kinase is tightly associated with the rhabdomeric membrane or the microvillar cytoskeleton. Rhodopsin kinase is released from the membrane or inactivated upon treatment with urea. It is concluded that this arrestin is a regulator protein that controls visual-pigment phosphorylation by affecting the interaction of metarhodopsin and rhodopsin (metarhodopsin) kinase.


Assuntos
Arrestinas , Proteínas do Olho/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas Quinases/metabolismo , Rodopsina/metabolismo , Animais , Sítios de Ligação , Membrana Celular/enzimologia , Dípteros , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Proteínas do Olho/química , Proteínas do Olho/isolamento & purificação , Receptor Quinase 1 Acoplada a Proteína G , Focalização Isoelétrica , Luz , Microvilosidades/metabolismo , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosforilação , Proteínas Quinases/química , Ureia/farmacologia
7.
Eur J Biochem ; 161(1): 61-7, 1986 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-3780740

RESUMO

Rhodopsin (P, lambda max 480 nm) of blowfly photoreceptors R1-6 is converted by light into a thermally stable metarhodopsin (M, lambda max 565 nm). In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane. ADP-ribosylation of the 41-kDa protein is catalyzed by cholera toxin and is inhibited by P----M conversion. The 41-kDa protein might represent the alpha-subunit of the G-protein, proposed to be part of the phototransduction mechanism [Blumenfeld, A. et al. (1985) Proc. Natl Acad. Sci. USA 82, 7116-7120]. P----M conversion leads to phosphorylation of opsin at multiple binding sites: up to 4 mol phosphate are bound/mol M formed. Dephosphorylation of the phosphate binding sites is induced by photoconversion of M to P. High levels of calcium (2 mM) inhibit phosphorylation of M and increase dephosphorylation of P. Protein patterns obtained by sodium dodecyl sulfate gel electrophoresis of irradiated retina membranes show an increased incorporation of label from [gamma-32P]ATP also into protein bands of 48 kDa, 68 kDa and 200 kDa. Binding studies reveal that in the case of the 48-kDa protein this effect is primarily due to a light-induced binding of the protein to the photoreceptor membrane. The binding of the 48-kDa phosphoprotein is reversible: after M----P conversion the protein becomes extractable by isotonic buffers. These data suggest that in rhabdomeric photoreceptors of invertebrates light-activation of rhodopsin is coupled to an enzyme cascade in a similar way as in the ciliary photoreceptors of vertebrates, although there may be differences, e.g. in the type of G-protein which mediates between the activated state of metarhodopsin and a signal-amplifying enzyme reaction.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Fotoquímica , Células Fotorreceptoras/fisiologia , Animais , Biotransformação , Cálcio/farmacologia , Catálise , Membrana Celular/metabolismo , Dípteros , Eletroforese em Gel de Poliacrilamida , Luz , Proteínas de Membrana/isolamento & purificação , Fosforilação , Ligação Proteica , Rodopsina/metabolismo
8.
Nature ; 302(5907): 417-9, 1983.
Artigo em Inglês | MEDLINE | ID: mdl-6835374

RESUMO

The absorption of light by the chromophore of rhodopsin initiates a series of interconversions between spectrally distinct intermediates. The possibility has been raised that one of these transitions is accompanied by a change in the state of rhodopsin, and that it is this change which instigates visual excitation via a cascade of enzyme catalysed reactions. It has been suggested that the initial step of this cascade, which leads to the activation of cyclic GMP phosphodiesterase (PDE), involves the interaction of a GTP-binding regulatory (G) protein with rhodopsin. The ability of rhodopsin to activate PDE may be inhibited by the phosphorylation of sites exposed on the opsin surface as a result of light-induced conformational changes. To obtain more information about the relationship between the postchemical and biochemical reactions of rhodopsin we have investigated which transition leads to the activation of rhodopsin as a substrate for rhodopsin kinase, and report here that it is the transition from lumirhodopsin to metarhodopsin I.


Assuntos
Pigmentos da Retina , Rodopsina , Animais , Bovinos , Luz , Fosforilação , Conformação Proteica/efeitos da radiação , Proteínas Quinases/genética , Pigmentos da Retina/fisiologia , Rodopsina/fisiologia , Rodopsina/efeitos da radiação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...