Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429221

RESUMO

The effect of lucerne (Medicago sativa L.) pre-grazing pasture height on pasture intake and milk production was investigated in a sub-tropical partial mixed ration (PMR) dairy system in south-east Queensland, Australia. The experiment involved a 26-day adaptation period followed by an eight-day measurement period during April and May 2018. Twenty-four multiparous Holstein-Friesian dairy cows were offered a mixed ration at either 7 (low) or 14 (high) kg dry matter (DM)/cow/day and allocated pastures at pre-grazing heights ranging from 23 to 39 cm. The targeted pasture intake was 14 and 7 kg DM/cow/day for cows offered the low and high mixed ration allowances respectively, with a total intake target of 21 kg DM/cow/day. Pasture structure did not limit pasture intake as the all groups left at least 12% of the allocated area ungrazed, and therefore could selectively graze pasture. There was no significant difference in intake between mixed ration levels, however intake had a positive linear relationship with pre-grazing pasture height. For every one cm increase in pasture height, intake increased by 0.3 kg DM/cow/day. Using a grazing strategy that ensures the some pasture remains ungrazed and the pre-grazing height of lucerne is approximately 39 cm above ground level will maximise pasture intake in sub-tropical PMR dairy systems.

2.
Animals (Basel) ; 10(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456073

RESUMO

The effects of lucerne (Medicago sativa) post-grazing residual pasture height on pasture utilisation (vertical and horizontal), pasture intake and animal production were investigated in a sub-tropical partial mixed ration dairy system. The study took place at the Gatton Research Dairy, Southeast Queensland (-27.552, 152.333), with a 26-day adaptation period followed by two 8-day measurement periods during August and September 2018. A quantity of 30 multiparous Holstein-Friesian dairy cows were offered two levels of mixed ration, 7 and 14 kg dry matter (DM)/cow/day for low and high levels respectively, and five levels of pasture allocation, to achieve decreasing residual pasture heights. Pasture allocations measured from 5 cm above ground level for the low mixed ration groups averaged 12.7, 15.9, 19.8, 35.3 and 49.2 kg DM/cow/day, and for the high mixed ration groups averaged 5.0, 8.3, 10.3, 18.6, and 25.2 kg DM/cow/day, respectively. As pasture allocation decreased, cows were forced to graze further down into the pasture sward, and therefore residual pasture height declined. Total intake (kg DM/cow/day) declined as residual pasture height (expressed as % of the initial height) declined, irrespective of mixed ration level, decreasing by 0.5 kg DM/cow/day for every 10% decrease in residual pasture height. Low total intakes were associated with high non-esterified fatty acid (NEFA) levels in plasma, indicating mobilisation of fat tissue to maintain milk production. In the high allocation treatments, an area of pasture remained ungrazed and cows were only grazing the top leafy stratum where pasture intake rate and intake were highest. Therefore, to maximise intake in sub-tropical partial mixed ration (PMR) systems, lucerne pasture should be allocated so that cows are always grazing the top leafy stratum. This can be achieved by ensuring the pasture around faecal patches remains ungrazed.

3.
J Environ Qual ; 47(1): 54-61, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29415102

RESUMO

Grazing systems represent a significant source of enteric methane (CH), but available techniques for quantifying herd scale emissions are limited. This study explores the capability of an eddy covariance (EC) measurement system for long-term monitoring of CH emissions from grazing cattle. Measurements were made in two pasture settings: in the center of a large grazing paddock, and near a watering point where animals congregated during the day. Cattle positions were monitored through time-lapse images, and this information was used with a Lagrangian stochastic dispersion model to interpret EC fluxes and derive per-animal CH emission rates. Initial grazing paddock measurements were challenged by the rapid movement of cattle across the measurement footprint, but a feed supplement placed upwind of the measurements helped retain animals within the footprint, allowing emission estimates for 20% of the recorded daytime fluxes. At the water point, >50% of the flux measurement periods included cattle emissions. Overall, cattle emissions for the paddock site were higher (253 g CH m adult equivalent [AE] d, SD = 75) and more variable than emissions at the water point (158 g CH AE d, SD = 34). Combining results from both sites gave a CH production of 0.43 g kg body weight, which is in range of other reported emissions from grazing animals. With an understanding of animal behavior to allow the most effective use of tower placement, the combination of an EC measurement platform and a Lagrangian stochastic model could have practical applications for long-term monitoring of fluxes in grazing environments.


Assuntos
Metano/análise , Animais , Bovinos , Comportamento Alimentar , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...