Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21905, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318526

RESUMO

The Senegalese sole (Solea senegalensis) is an economically important flatfish species. In this study, a genome draft was analyzed to identify microsatellite (SSR) markers for whole-genome genotyping. A subset of 224 contigs containing SSRs were preselected and validated by using a de novo female hybrid assembly. Overall, the SSR density in the genome was 886.7 markers per megabase of genomic sequences and the dinucleotide motif was the most abundant (52.4%). In silico comparison identified a set of 108 SSRs (with di-, tetra- or pentanucleotide motifs) widely distributed in the genome and suitable for primer design. A total of 106 markers were structured in thirteen multiplex PCR assays (with up to 10-plex) and the amplification conditions were optimized with a high-quality score. Main genetic diversity statistics and genotyping reliability were assessed. A subset of 40 high polymorphic markers were selected to optimize four supermultiplex PCRs (with up to 11-plex) for pedigree analysis. Theoretical exclusion probabilities and real parentage allocation tests using parent-offspring information confirmed their robustness and effectiveness for parental assignment. These new SSR markers were combined with previously published SSRs (in total 229 makers) to construct a new and improved integrated genetic map containing 21 linkage groups that matched with the expected number of chromosomes. Synteny analysis with respect to C. semilaevis provided new clues on chromosome evolution in flatfish and the formation of metacentric and submetacentric chromosomes in Senegalese sole.


Assuntos
Mapeamento Cromossômico , Linguados/genética , Ligação Genética , Repetições de Microssatélites , Filogenia , Animais , Estudo de Associação Genômica Ampla , Sintenia
2.
Infect Genet Evol ; 54: 221-229, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28688976

RESUMO

Photobacterium damselae subsp. piscicida (Pdp) is an intracellular fish pathogen that causes photobacteriosis, a disease proven deadly in farmed fish worldwide. This work focuses on the analysis of genome sequences, chromosomes structure and gene contents of two strains from Sparus aurata (DI21) and Solea senegalensis (L091106-03H), isolated on the Spanish Atlantic coast. The comparative genomic analysis revealed that DI21 and L091106-03H share 98% of their genomes, including two virulence plasmids: pPHDP70 encoding siderophore piscibactin synthesis and pPHDP10 encoding the apoptotic toxin AIP56. Both genomes harbour a surprisingly large number of IS elements accounting for 12-17% of the total genome, representing an IS density of 0.15 elements per kb, one of the highest IS density values in a bacterial pathogen. This massive proliferation of ISs is responsible for the generation of a high number of pseudogenes that caused extensive loss of biological functions. Pseudogene formation is one of the main features of Pdp genome that explains most of the ecological and phenotypic differences with respect to its sibling subspecies P. damselae subsp. damselae and to other Vibrionaceae. Evidence was also found proving the existence of two chromosomal configurations depending on the origin of the strains: an European and an Asian/American types of genome organisation, reinforcing the idea of the existence of two geographically-linked clonal lineages in Pdp. In short, our study suggests that the host-dependent lifestyle of Pdp allowed massive IS proliferation and gene decay processes, which are major evolutionary forces in the shaping of the Pdp genome.


Assuntos
Doenças dos Peixes/microbiologia , Genoma Bacteriano , Genômica , Photobacterium/classificação , Photobacterium/genética , Animais , Cromossomos Bacterianos , Biologia Computacional , Genes Bacterianos , Ligação Genética , Genômica/métodos , Anotação de Sequência Molecular , Mutagênese Insercional , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
3.
BMC Genomics ; 15: 952, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25366320

RESUMO

BACKGROUND: Senegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution. RESULTS: A comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB. CONCLUSIONS: Transcriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species.


Assuntos
Biologia Computacional/métodos , Linguados/genética , Anotação de Sequência Molecular , Transcriptoma , Animais , Cristalinas , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Filogenia , Reprodutibilidade dos Testes , Interface Usuário-Computador
4.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256179

RESUMO

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Assuntos
Biotecnologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Cruzamento , DNA Complementar/genética , Bases de Dados Genéticas , Tamanho do Genoma , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...