Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515212

RESUMO

Outbreaks of Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Erebidae), a major pest of soybean, can be controlled below economic thresholds with methods that do not involve the application of synthetic insecticides. Formulations based on natural isolates of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) (Baculoviridae: Alphabaculovirus) played a significant role in integrated pest management programs in the early 2000s, but a new generation of chemical insecticides and transgenic soybean have displaced AgMNPV-based products over the past decade. However, the marked genotypic variability present among and within alphabaculovirus isolates suggests that highly insecticidal genotypic variants can be isolated and used to reduce virus production costs or overcome isolate-dependent host resistance. This study aimed to select novel variants of AgMNPV with suitable insecticidal traits that could complement the existing AgMNPV active ingredients. Three distinct AgMNPV isolates were compared using their restriction endonuclease profile and in terms of their occlusion body (OB) pathogenicity. One isolate was selected (AgABB51) from which eighteen genotypic variants were plaque purified and characterized in terms of their insecticidal properties. The five most pathogenic variants varied in OB pathogenicity, although none of them was faster-killing or had higher OB production characteristics than the wild-type isolate. We conclude that the AgABB51 wild-type isolates appear to be genotypically structured for fast speed of kill and high OB production, both of which would favor horizontal transmission. Interactions among the component variants are likely to influence this insecticidal phenotype.


Assuntos
Inseticidas , Mariposas , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/genética , Fenótipo , Larva
2.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696324

RESUMO

The mechanisms generating variability in viruses are diverse. Variability allows baculoviruses to evolve with their host and with changes in their environment. We examined the role of one genetic variant of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and its contribution to the variability of the virus under laboratory conditions. A mixture of natural isolates (ChinNPV-Mex1) contained two genetic variants that dominated over other variants in individual larvae that consumed high (ChinNPV-K) and low (ChinNPV-E) concentrations of inoculum. Studies on the ChinNPV-K variant indicated that it was capable of generating novel variation in a concentration-dependent manner. In cell culture, cells inoculated with high concentrations of ChinNPV-K produced OBs with the ChinNPV-K REN profile, whereas a high diversity of ChinNPV variants was recovered following plaque purification of low concentrations of ChinNPV-K virion inoculum. Interestingly, the ChinNPV-K variant could not be recovered from plaques derived from low concentration inocula originating from budded virions or occlusion-derived virions of ChinNPV-K. Genome sequencing revealed marked differences between ChinNPV-K and ChinNPV-E, with high variation in the ChinNPV-K genome, mostly due to single nucleotide polymorphisms. We conclude that ChinNPV-K is an unstable genetic variant that is responsible for generating much of the detected variability in the natural ChinNPV isolates used in this study.


Assuntos
Variação Genética , Nucleopoliedrovírus/genética , Animais , Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/classificação , Controle Biológico de Vetores , Filogenia , Polimorfismo de Nucleotídeo Único , Vírion
3.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187994

RESUMO

Alphabaculoviruses (Baculoviridae) are pathogenic DNA viruses of Lepidoptera that have applications as the basis for biological insecticides and expression vectors in biotechnological processes. These viruses have a characteristic physical structure that facilitates the transmission of groups of genomes. We demonstrate that coinfection of a susceptible insect by two different alphabaculovirus species results in the production of mixed-virus occlusion bodies containing the parental viruses. This occurred between closely related and phylogenetically more distant alphabaculoviruses. Approximately half the virions present in proteinaceous viral occlusion bodies produced following coinfection of insects with a mixture of two alphabaculoviruses contained both viruses, indicating that the viruses coinfected and replicated in a single cell and were coenveloped within the same virion. This observation was confirmed by endpoint dilution assay. Moreover, both viruses persisted in the mixed-virus population by coinfection of insects during several rounds of insect-to-insect transmission. Coinfection by viruses that differed in genome size had unexpected results on the length of viral nucleocapsids, which differed from those of both parental viruses. These results have unique implications for the development of alphabaculoviruses as biological control agents of insect pests.IMPORTANCE Alphabaculoviruses are used as biological insecticides and expression vectors in biotechnology and medical applications. We demonstrate that in caterpillars infected with particular mixtures of viruses, the genomes of different baculovirus species can be enveloped together within individual virions and occluded within proteinaceous occlusion bodies. This results in the transmission of mixed-virus populations to the caterpillar stages of moth species. Once established, mixed-virus populations persist by coinfection of insect cells during several rounds of insect-to-insect transmission. Mixed-virus production technology opens the way to the development of custom-designed insecticides for control of different combinations of caterpillar pest species.


Assuntos
Agentes de Controle Biológico , Inseticidas , Larva/virologia , Nucleopoliedrovírus , Spodoptera/virologia , Animais , Vírion
4.
Insects ; 11(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167386

RESUMO

Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator's excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.

5.
Viruses ; 11(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323893

RESUMO

Phylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed. The host range of these viruses was compared using high concentrations of inoculum to inoculate second instars of six species of Lepidoptera. One semi-permissive host (Spodopteralittoralis) and one permissive host (S.exigua) were then selected and used to perform six serial passages involving a concentration corresponding to the ~25% lethal concentration for both viruses. Restriction endonuclease analysis showed fragment length polymorphisms in every host-virus system studied. In S.littoralis, serial passage of MbMNPV resulted in decreased pathogenicity and an increase in speed-of-kill, whereas no significant changes were detected for HearMNPV with respect to the initial inoculum. In contrast, both viruses showed a similar trend in S.exigua. These results highlight the low genetic diversity and a high phenotypic stability of HearMNPV with respect to the original inoculum after six successive passages in both insect hosts. This study concludes that host-baculovirus interactions during serial passage are complex and the process of adaptation to a novel semi-permissive host is far from predictable.


Assuntos
Variação Genética , Especificidade de Hospedeiro , Nucleopoliedrovírus/fisiologia , Tropismo Viral , Replicação Viral , Animais , Células Cultivadas , DNA Viral , Suscetibilidade a Doenças , Insetos/virologia , Nucleopoliedrovírus/classificação , Inoculações Seriadas
6.
Viruses ; 11(7)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247955

RESUMO

Genetic variation in baculoviruses is recognized as a key factor, not only due to the influence of such variation on pathogen transmission and virulence traits, but also because genetic variants can form the basis for novel biological insecticides. In this study, we examined the genetic variability of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) present in field isolates obtained from virus-killed larvae. Different ChinNPV strains were identified by restriction endonuclease analysis, from which genetic variants were isolated by plaque assay. Biological characterization studies were based on pathogenicity, median time to death (MTD), and viral occlusion body (OB) production (OBs/larva). Nine different isolates were obtained from eleven virus-killed larvae collected from fields of soybean in Mexico. An equimolar mixture of these isolates, named ChinNPV-Mex1, showed good insecticidal properties and yielded 23 genetic variants by plaque assay, one of which (ChinNPV-R) caused the highest mortality in second instars of C. includens. Five of these variants were selected: ChinNPV-F, ChinNPV-J, ChinNPV-K, ChinNPV-R, and ChinNPV-V. No differences in median time to death were found between them, while ChinNPV-F, ChinNPV-K, ChinNPV-R and ChinNPV-V were more productive than ChinNPV-J and the original mixture of field isolates ChinNPV-Mex1. These results demonstrate the high variability present in natural populations of this virus and support the use of these new genetic variants as promising active substances for baculovirus-based bioinsecticides.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus/genética , Animais , Variação Genética , Genótipo , Larva/crescimento & desenvolvimento , Larva/virologia , Mariposas/crescimento & desenvolvimento , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Nucleopoliedrovírus/fisiologia , Controle Biológico de Vetores
7.
J Invertebr Pathol ; 127: 101-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25797095

RESUMO

The "11K" gene family is notable for having homologs in both baculoviruses and entomopoxviruses and is classified as either type 145 or type 150, according to their similarity with the ac145 or ac150 genes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). One homolog of ac145 (sf138) and two homologs of ac150 (sf68 and sf95) are present in Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Recombinant bacmids lacking sf68, sf95 or sf138 (Sf68null, Sf95null and Sf138null, respectively) and the respective repair bacmids were generated from a bacmid comprising the complete virus genome. Occlusion bodies (OBs) of the Sf138null virus were ∼15-fold less orally infective to insects, which was attributed to a 100-fold reduction in ODV infectious titer. Inoculation of insects with Sf138null OBs in mixtures with an optical brightener failed to restore the pathogenicity of Sf138null OBs to that of the parental virus, indicating that the effects of sf138 deletion on OB pathogenicity were unlikely to involve an interaction with the gut peritrophic matrix. In contrast, deletion of sf68 and sf95 resulted in a slower speed-of-kill by 9h, and a concurrent increase in the yield of OBs. Phylogenetic analysis indicated that sf68 and sf95 were not generated after a duplication event of an ancestral gene homologous to the ac150 gene. We conclude that type 145 genes modulate the primary infection process of the virus, whereas type 150 genes appear to have a role in spreading systemic infection within the insect.


Assuntos
Nucleopoliedrovírus/genética , Controle Biológico de Vetores/métodos , Spodoptera/virologia , Sequência de Aminoácidos , Animais , Genes Virais , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Virais , Vírion/genética
8.
J Virol ; 88(6): 3548-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403587

RESUMO

UNLABELLED: Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses--AcMNPV and SfMNPV--but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses. IMPORTANCE: Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period of ca. 16 h but then blocks multiple infections as newly generated virus particles begin to leave the infected cell. This temporal window has two important consequences. First, it allows multiple genotypes to almost simultaneously infect cells within the host, thus generating genetically diverse virus particles for transmission. Second, it provides a mechanism by which different viruses replicating in the same cell nucleus can exchange genetic material, so that the progeny viruses may be a mosaic of genes from each of the parental viruses. This opens a completely new avenue of research into the evolution of these insect pathogens.


Assuntos
Actinas/metabolismo , Coinfecção/veterinária , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Superinfecção/veterinária , Animais , Núcleo Celular/metabolismo , Coinfecção/metabolismo , Coinfecção/virologia , Citoplasma/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/metabolismo , Superinfecção/metabolismo , Superinfecção/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
PLoS One ; 8(10): e77683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204916

RESUMO

A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity) to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.


Assuntos
Nucleocapsídeo/genética , Nucleopoliedrovírus/genética , Spodoptera/virologia , Vírion/genética , Animais , DNA Viral/genética , Genes Essenciais/genética , Genoma Viral/genética , Genótipo , Larva/virologia , Proteínas Virais/genética , Replicação Viral/genética
10.
J Invertebr Pathol ; 107(1): 33-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21238456

RESUMO

The complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954bp) was 1623bp and 389bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19. Nucleotide sequences were strongly conserved (99.35% identity) and a high degree of predicted amino acid sequence identity was observed. A total of 145 open reading frames (ORFs) were identified in SfMNPV-B, two of them (sf39a and sf110a) had not been previously identified in the SfMNPV-3AP2 and SfMNPV-19 genomes and one (sf57a) was absent in both these genomes. In addition, sf6 was not previously identified in the SfMNPV-19 genome. In contrast, SfMNPV-B and SfMNPV-19 both lacked sf129 that had been reported in SfMNPV-3AP2. In an effort to identify genes potentially involved in virulence or in determining population adaptations, selection pressure analysis was performed. Three ORFs were identified undergoing positive selection: sf49 (pif-3), sf57 (odv-e66b) and sf122 (unknown function). Strong selection for ODV envelope protein genes indicates that the initial infection process in the insect midgut is one critical point at which adaptation acts during the transmission of these viruses in geographically distant populations. The function of ORF sf122 is being examined.


Assuntos
DNA Viral/genética , Nucleopoliedrovírus/genética , Spodoptera/parasitologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Nucleopoliedrovírus/isolamento & purificação , Nucleopoliedrovírus/patogenicidade , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...