Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(41): 12344-12349, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30240229

RESUMO

Surface active agents (surfactants) are commonly used to improve the wetting of aqueous solutions on hydrophobic surfaces. The improved wettability is usually quantified as a decrease of the contact angle θ of a droplet on the surface, where the contact angle θ is given by the three surface tensions involved. Surfactants are known to lower the liquid-vapor surface tension, but what they do to the two other surface tensions is less clear. We propose an improved Zisman method for quantifying the wetting behavior of surfactants at the solid surface. This allows us to show that a number of very common surfactants do not change the wettability of the solid: they give the same contact angle as a simple liquid with the same liquid-vapor surface tension. Surface-specific sum-frequency generation spectroscopy shows that nonetheless surfactants are present at the solid surface. The surfactants therefore change the solid-liquid and solid-vapor surface tensions by the same amount, leading to an unchanged contact angle.

2.
Sci Rep ; 5: 10519, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013156

RESUMO

The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

3.
Microsc Microanal ; 18(1): 171-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22214656

RESUMO

Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 µm) that were observed to further link with bulk pores outside the matrix.

4.
Lab Chip ; 11(22): 3785-92, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22011687

RESUMO

In this study, we design a microfluidic chip, which represents the pore structure of a naturally occurring oil-bearing reservoir rock. The pore-network has been etched in a silicon substrate and bonded with a glass covering layer to make a complete microfluidic chip, which is termed as 'Reservoir-on-a-chip' (ROC). Here we report, for the first time, the ability to perform traditional waterflooding experiments in a ROC. Oil is kept as the resident phase in the ROC, and waterflooding is performed to displace the oil phase from the network. The flow visualization provides specific information about the presence of the trapped oil phase and the movement of the oil/water interface/meniscus in the network. The recovery curve is extracted based on the measured volume of oil at the outlet of the ROC. We also provide the first indication that this oil-recovery trend realized at chip-level can be correlated to the flooding experiments related to actual reservoir cores. Hence, we have successfully demonstrated that the conceptualized 'Reservoir-on-a-Chip' has the features of a realistic pore-network and in principle is able to perform the necessary flooding experiments that are routinely done in reservoir engineering.

5.
Micron ; 42(5): 412-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21208806

RESUMO

Berea sandstone is the building block for reservoirs containing precious hydrocarbon fuel. In this study, we comprehensively reveal the microstructure of Berea sandstone, which is often treated as a porous material with interconnected micro-pores of 2-5 µm. This has been possible due to the combined application of micro-computed tomography (CT) and focused ion beam (FIB)-scanning electron microscopy (SEM) on a Berea sample. While the use of micro-CT images are common for geological materials, the clubbing and comparison of tomography on Berea with state-of-the-art microstructure imaging techniques like FIB-SEM reveals some unforeseen features of Berea microstructure. In particular, for the first time FIB-SEM has been used to understand the micro-structure of reservoir rock material like Berea sandstone. By using these characterization tools, we are able to show that the micro-pores (less than 30 µm) are absent below the solid material matrix, and that it has small interconnected pores (30-40 µm) and large crater-like voids (100-250 µm) throughout the bulk material. Three-dimensional pore space reconstructions have been prepared from the CT images. Accordingly, characterization of Berea sandstone specimen is performed by calculation of pore-structure volumes and determination of porosity values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...